
Recherche avancée
Médias (91)
-
Head down (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Echoplex (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Discipline (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Letting you (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
1 000 000 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
999 999 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (111)
-
Script d’installation automatique de MediaSPIP
25 avril 2011, parAfin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
La documentation de l’utilisation du script d’installation (...) -
Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs
12 avril 2011, parLa manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras. -
Librairies et binaires spécifiques au traitement vidéo et sonore
31 janvier 2010, parLes logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
Binaires complémentaires et facultatifs flvtool2 : (...)
Sur d’autres sites (9460)
-
ffmpeg .bat script to change frame rate for multiple clips in a folder ?
3 avril 2020, par DanHow do I write a .bat file in Windows 10 that changes the frame rate for multiple mp4 video clips in a folder ? For example ; change the frame rate from 50fps to 25fps (without re-encoding or dropping frames, so that footage is essentially slowed down.)



At the moment these are the commands I've tried using in two separate .bat text files. (I'd like to combine them but don't know how yet).



for %%A IN (*.mp4) DO ffmpeg -y -i "%%A" -c copy -f h264 "%%A.h264"

for %%A IN (*.h264) DO ffmpeg -y -r 25 -i "%%A" -c copy
 "%%A_25.mp4"




Problem is these commands don't replace the file extension type, they append to the existing one, ie. '.mp4' becomes '.mp4.h264' then '.mp4.h264_25fps.mp4', and I can't get the second one to work for some reason.



Any advice appreciated. How do I replace the existing file extensions for a group of clips and combine commands into a single .bat ?


-
pthread_frame : do not share priv_data between multiple codec contexts
15 janvier 2017, par Anton Khirnov -
FPS goes down while performing object detection using TensorFlow on multiple threads
14 mai 2020, par Apoorv MishraI am trying to run object detection on multiple cameras. I am using SSD mobinet v2 frozen graph to perform object detection with TensorFlow and OpenCV. I had implemented threading to invoke the separate thread for separate camera. But doing so I'm getting low FPS with multiple video streams.



Note : The model is working fine with single stream. Also when number of detected objects in different frames are low, I'm getting decent FPS.



My threading logic is working fine. I guess I'm having issue with using the graph and session. Please let me know what am I doing wrong.



with tf.device('/GPU:0'):
 with detection_graph.as_default():
 with tf.Session(config=config, graph=detection_graph) as sess:
 while True:
 # Read frame from camera
 raw_image = pipe.stdout.read(IMG_H*IMG_W*3)
 image = np.fromstring(raw_image, dtype='uint8') # convert read bytes to np
 image_np = image.reshape((IMG_H,IMG_W,3))
 img_copy = image_np[170:480, 100:480]
 # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
 image_np_expanded = np.expand_dims(img_copy, axis=0)
 # Extract image tensor
 image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
 # Extract detection boxes
 boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
 # Extract detection scores
 scores = detection_graph.get_tensor_by_name('detection_scores:0')
 # Extract detection classes
 classes = detection_graph.get_tensor_by_name('detection_classes:0')
 # Extract number of detections
 num_detections = detection_graph.get_tensor_by_name(
 'num_detections:0')
 # Actual detection.
 (boxes, scores, classes, num_detections) = sess.run(
 [boxes, scores, classes, num_detections],
 feed_dict={image_tensor: image_np_expanded})
 # Visualization of the results of a detection.
 boxes = np.squeeze(boxes)
 scores = np.squeeze(scores)
 classes = np.squeeze(classes).astype(np.int32)

 box_to_display_str_map = collections.defaultdict(list)
 box_to_color_map = collections.defaultdict(str)

 for i in range(min(max_boxes_to_draw, boxes.shape[0])):
 if scores is None or scores[i] > threshold:
 box = tuple(boxes[i].tolist())
 if classes[i] in six.viewkeys(category_index):
 class_name = category_index[classes[i]]['name']
 display_str = str(class_name)
 display_str = '{}: {}%'.format(display_str, int(100 * scores[i]))
 box_to_display_str_map[box].append(display_str)
 box_to_color_map[box] = STANDARD_COLORS[
 classes[i] % len(STANDARD_COLORS)]
 for box,color in box_to_color_map.items():
 ymin, xmin, ymax, xmax = box
 flag = jam_check(xmin, ymin, xmax, ymax, frame_counter)
 draw_bounding_box_on_image_array(
 img_copy,
 ymin,
 xmin,
 ymax,
 xmax,
 color=color,
 thickness=line_thickness,
 display_str_list=box_to_display_str_map[box],
 use_normalized_coordinates=use_normalized_coordinates)

 image_np[170:480, 100:480] = img_copy

 image_np = image_np[...,::-1]

 pipe.stdout.flush()

 yield cv2.imencode('.jpg', image_np, [int(cv2.IMWRITE_JPEG_QUALITY), 50])[1].tobytes()




I've set the config as :



config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=0.4