
Recherche avancée
Autres articles (52)
-
La file d’attente de SPIPmotion
28 novembre 2010, parUne file d’attente stockée dans la base de donnée
Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Les formats acceptés
28 janvier 2010, parLes commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
ffmpeg -codecs ffmpeg -formats
Les format videos acceptés en entrée
Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
Les formats vidéos de sortie possibles
Dans un premier temps on (...)
Sur d’autres sites (8964)
-
swresample/resample : speed up Blackman Nuttall filter
9 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : speed up Blackman Nuttall filter
This may be a slightly surprising optimization, but is actually based on
an understanding of how math libraries compute trigonometric functions.
Explanation is given here so that future development uses libm more effectively
across the codebase.All libm’s essentially compute transcendental functions via some kind of
polynomial approximation, be it Taylor-Maclaurin or Chebyshev.
Correction terms are added via polynomial correction factors when needed
to squeeze out the last bits of accuracy. Lookup tables are also
inserted strategically.In the case of trigonometric functions, periodicity is exploited via
first doing a range reduction to an interval around zero, and then using
some polynomial approximation.This range reduction is the most natural way of doing things - else one
would need polynomials for ranges in different periods which makes no
sense whatsoever.To avoid the need for the range reduction, it is helpful to feed in
arguments as close to the origin as possible for the trigonometric
functions. In fact, this also makes sense from an accuracy point of view :
IEEE floating point has far more resolution for small numbers than big ones.This patch does this for the Blackman-Nuttall filter, and yields a
non-negligible speedup.Sample benchmark (x86-64, Haswell, GNU/Linux)
test : fate-swr-resample-dblp-2626-44100
old :
18893514 decicycles in build_filter (loop 1000), 256 runs, 0 skips
18599863 decicycles in build_filter (loop 1000), 512 runs, 0 skips
18445574 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsnew :
16290697 decicycles in build_filter (loop 1000), 256 runs, 0 skips
16267172 decicycles in build_filter (loop 1000), 512 runs, 0 skips
16251105 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsReviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com> -
swresample/resample : improve bessel function accuracy and speed
2 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : improve bessel function accuracy and speed
This improves accuracy for the bessel function at large arguments, and this in turn
should improve the quality of the Kaiser window. It also improves the
performance of the bessel function and hence build_filter by 20%.
Details are given below.Algorithm : taken from the Boost project, who have done a detailed
investigation of the accuracy of their method, as compared with e.g the
GNU Scientific Library (GSL) :
http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html.
Boost source code (also cited and licensed in the code) :
https://searchcode.com/codesearch/view/14918379/.Accuracy : sample values may be obtained as follows. i0 denotes the old bessel code,
i0_boost the approach here, and i0_real an arbitrary precision result (truncated) from Wolfram Alpha :
type "bessel i0(6.0)" to reproduce. These are evaluation points that occur for
the default kaiser_beta = 9.Some illustrations :
bessel(8.0)
i0 (8.000000) = 427.564115721804739678191254
i0_boost(8.000000) = 427.564115721804796521610115
i0_real (8.000000) = 427.564115721804785177396791bessel(6.0)
i0 (6.000000) = 67.234406976477956163762428
i0_boost(6.000000) = 67.234406976477970374617144
i0_real (6.000000) = 67.234406976477975326188025Reason for accuracy : Main accuracy benefits come at larger bessel arguments, where the
Taylor-Maclaurin method is not that good : 23+ iterations
(at large arguments, since the series is about 0) can cause
significant floating point error accumulation.Benchmarks : Obtained on x86-64, Haswell, GNU/Linux via a loop calling
build_filter 1000 times :
test : fate-swr-resample-dblp-44100-2626new :
995894468 decicycles in build_filter(loop 1000), 256 runs, 0 skips
1029719302 decicycles in build_filter(loop 1000), 512 runs, 0 skips
984101131 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsold :
1250020763 decicycles in build_filter(loop 1000), 256 runs, 0 skips
1246353282 decicycles in build_filter(loop 1000), 512 runs, 0 skips
1220017565 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsA further 5% may be squeezed by enabling -ftree-vectorize. However,
this is a separate issue from this patch.Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com> -
swresample/resample : speed up build_filter for Blackman-Nuttall filter
5 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : speed up build_filter for Blackman-Nuttall filter
This uses the trigonometric double and triple angle formulae to avoid
repeated (expensive) evaluation of libc’s cos().Sample benchmark (x86-64, Haswell, GNU/Linux)
test : fate-swr-resample-dblp-44100-2626
old :
1104466600 decicycles in build_filter(loop 1000), 256 runs, 0 skips
1096765286 decicycles in build_filter(loop 1000), 512 runs, 0 skips
1070479590 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsnew :
588861423 decicycles in build_filter(loop 1000), 256 runs, 0 skips
591262754 decicycles in build_filter(loop 1000), 512 runs, 0 skips
577355145 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsThis results in small differences with the old expression :
difference (worst case on [0, 2*M_PI]), argmax 0.008 :
max diff (relative) : 0.000000000000157289807188
blackman_old(0.008) : 0.000363951585488813192382
blackman_new(0.008) : 0.000363951585488755946507These are judged to be insignificant for the performance gain. PSNR to
reference file is unchanged up to second decimal point for instance.Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>