Recherche avancée

Médias (0)

Mot : - Tags -/metadatas

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (49)

  • Participer à sa traduction

    10 avril 2011

    Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
    Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
    Actuellement MediaSPIP n’est disponible qu’en français et (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

Sur d’autres sites (6670)

  • Investigating Steam for Linux

    1er mars 2013, par Multimedia Mike — Game Hacking

    Valve recently released the final, public version of their Steam client for Linux, and the Linux world rejoiced. At least, it probably did. The announcement was 2 weeks ago on Valentine’s Day and I had other things on my mind, so I missed any fanfare. When framed in this manner, the announcement timing becomes suspect– it’s as though Linux enthusiasts would have plenty of time that day or something.


    Valve Steam logo

    Taming the Frontier
    Speculation about a Linux Steam client had been kicking around for nearly as long as Steam has existed. However, sometime last year, the rumors became more substantive.

    I naturally wondered how to port something like Steam to Linux. I have some experience with trying to make a necessarily binary-only program that runs on Linux. I’m fairly well-versed in the assorted technical challenges that one might face when attempting such a feat. Because of this, whenever I hear rumors that a company might be entertaining the notion of porting a major piece of proprietary software to Linux, my instinctive reflex is, “What ?! Why, you fools ?! Save yourselves !”

    At least, that’s how it used to be. The proposal of developing a proprietary binary for Linux has been rendered considerably less insane by a few developments, for example :

    1. The rise of Ubuntu Linux as a quasi de facto standard for desktop Linux computing
    2. The increasing homogeneity in personal desktop computing technology

    What I would like to know is how the Steam client runs on Linux. Does it rely on any libraries being present on the system ? Or does it bring its own ? The latter is a trick that proprietary programs can use– transport all of the shared libraries that the main program binary depends upon, install them someplace out of the way on the filesystem, probably in /opt, and then make the main program a shell script which sets a preload path to rely on the known quantity libraries instead of the copies already on the system.

    Downloading and Installing the Client
    For this exercise, I installed x86_64 desktop Ubuntu 12.04 Linux on a l33t gaming rig that was totally top of the line about 5 years ago, and that someone didn’t want anymore and handed down to me recently. So it should be ideal for this project.

    At first, I was blown away– the Linux client is in a .deb package that is less than 2 MB large. I unpacked the steam.deb file and found a bunch of support libraries — mostly X11 and standard C/C++ runtimes. Just as I suspected. Still, I can’t believe how small the thing is. However, my amazement quickly abated when I actually ran Steam and saw this :


    Steam Linux Client -- initial update

    So it turns out steam.db is just the installer program which immediately proceeds to download an additional 160+ MB of data. So there’s actually a lot more information to possibly sift through.

    Another component of the installation is to basically run a big ‘apt-get install’ command to make sure a bunch of required packages are installed :


    Steam Linux Client -- install system packages

    After all these installation steps, the client was ready to run. However, whenever I tried to do so, I got this dialog which would cause Steam to close when the dialog was dismissed.


    Steam Linux Client -- Upgrade NVIDIA drivers

    Not a huge deal ; later NVIDIA drivers are fairly straightforward to install on Ubuntu Linux. After a few minutes of downloading, installing and restarting X, Steam ran with minimal complaint (it still had some issue regarding the video drivers but didn’t seem to consider it a deal-breaker).

    Using Steam on Linux

    So here’s Steam running on Linux :


    Steam Linux Client -- main screen

    If you have experience with using Steam on Windows or Mac, you might observe that it looks exactly the same. I don’t have a very expansive library of games (I only started using Steam because purchasing a few computer components a few years ago entitled me to some free Steam downloads of some of the games on the list in the screenshot). I didn’t really expect any of the games to have Linux versions yet, but it turns out that the indie darling FTL : Faster Than Light has been ported to Linux. FTL was a much-heralded Kickstarter success story and sounded like something I wanted to support. I purchased this from Steam shortly after its release last year and was able to download the Linux version at no additional cost with a single click.

    It runs natively on Linux (note the Ubuntu desktop window decorations) :


    FTL game running on Linux through Steam

    You might notice from the main Steam client that, despite purchasing FTL about a 1/2 year ago and starting it up at least a 1/2 dozen times, I haven’t really invested a whole lot of time into it. I only managed to get about 2 minutes further this time :


    A few more minutes in FTL

    What can I say ? This game just bores me to tears. It’s frustrating because I know that this is one of the cool games that all real gamers are supposed to like, but I practically catch myself nodding off every time I try to run through the tutorial. It’s strange to think that I’ve invested far more time into games that offer considerably less stimulation. That’s probably because I had far more free time compared to gaming options during those times.

    But that’s neither here nor there. We’ll file this under “games that aren’t for me.” I’m glad that people like FTL and a little indie underdog has met with such success. And I’m pleased that Steam on Linux works. It’s native and the games are also native, which is all quite laudable (there was speculation that everything would just be running on top of a Wine layer).

    Deeper Analysis
    So I set out wondering how Steam was able to create a proprietary program that would satisfy a large enough cross-section of Linux users (i.e., on different platforms and distros). Answer : well, they didn’t, per the stated requirements. The installation is only tuned to work on Ubuntu 12.04. However, it works on both 32- and 64-bit platforms, the only 2 desktop CPU platforms that matter these days (unless ARM somehow makes inroads on the desktop). The Steam client is quite clearly an x86_32 binary– look at the terminal screenshot above and observe that it’s downloading all :i386 support libraries.

    The file /usr/bin/steam isn’t a binary but a launcher shell script (something you’ll also see if you investigate /usr/bin/firefox on a Linux system). Here’s an interesting tidbit :

    function detect_platform()
    
      # Maybe be smarter someday
      # Right now this is the only platform we have a bootstrap for, so hard-code it.
      echo ubuntu12_32
    
    

    I wager that it’s possible to get Steam running on other distributions, it probably just takes a little more effort (assuming that Steam doesn’t put too much effort into thwarting such attempts).

    As for the FTL game, it comes with binaries and libraries for both x86_32 and x86_64. So, good work to the dev team for creating and testing both versions. FTL also distributes versions of the libraries it expects to work with.

    I suspect that the Steam client overall is largely a WWW rendering engine underneath the covers. That would help explain how Valve is able to achieve such a consistent look and feel, not only across OS platforms, but also through a web browser. When I browse the Steam store through Google Chrome, it looks and feels exactly like the native desktop client. When I first thought of how someone could port Steam to Linux, I immediately wondered about how they would do the UI.

    A little Googling for “steam uses webkit” (just a hunch) confirms my hypothesis.

  • Adding A New System To The Game Music Website

    1er août 2012, par Multimedia Mike — General

    At first, I was planning to just make a little website where users could install a Chrome browser extension and play music from old 8-bit NES games. But, like many software projects, the goal sort of ballooned. I created a website where users can easily play old video game music. It doesn’t cover too many systems yet, but I have had individual requests to add just about every system you can think of.

    The craziest part is that I know it’s possible to represent most of the systems. Eventually, it would be great to reach Chipamp parity (a combination plugin for Winamp that packages together plugins for many of these chiptunes). But there is a process to all of this. I have taken to defining a number of phases that are required to get a new system covered.

    Phase 0 informally involves marveling at the obscurity of some of the console systems for which chiptune collections have evolved. WonderSwan ? Sharp X68000 ? PC-88 ? I may be viewing this through a terribly Ameri-centric lens. I’ve at least heard of the ZX Spectrum and the Amstrad CPC even if I’ve never seen either.

    No matter. The goal is to get all their chiptunes cataloged and playable.

    Phase 1 : Finding A Player
    The first step is to find a bit of open source code that can play a particular format. If it’s a library that can handle many formats, like Game Music Emu or Audio Overload SDK, even better (probably). The specific open source license isn’t a big concern for me. I’m almost certain that some of the libraries that SaltyGME currently mixes are somehow incompatible, license-wise. I’ll worry about it when I encounter someone who A) cares, and B) is in a position to do something about it. Historical preservation comes first, and these software libraries aren’t getting any younger (I’m finding some that haven’t been touched in a decade).

    Phase 2 : Test Program
    The next phase is to create a basic test bench program that sends a music file into the library, generates a buffer of audio, and shoves it out to the speakers via PulseAudio’s simple API (people like to rip on PulseAudio, but its simple API really lives up to its name and requires pages less boilerplate code to play a few samples than ALSA).

    Phase 3 : Plug Into Web Player
    After successfully creating the test bench and understanding exactly which source files need to be built, the next phase is to hook it up to the main SaltyGME program via the ad-hoc plugin API I developed. This API requires that a player backend can, at the very least, initialize itself based on a buffer of bytes and generate audio samples into an array of 16-bit numbers. The API also provides functions for managing files with multiple tracks and toggling individual voices/channels if the library supports such a feature. Having the test bench application written beforehand usually smooths out this step.

    But really, I’m just getting started.

    Phase 4 : Collecting A Song Corpus
    Then there is the matter of staging a collection of songs for a given system. It seems like it would just be a matter of finding a large collection of songs for a given format, downloading them in bulk, and mirroring them. Honestly, that’s the easy part. People who are interested in this stuff have been lovingly curating massive collections of these songs for years (see SNESmusic.org for one of the best examples, and they also host a torrent of all their music for really quick and easy hoarding).

    In my drive to make this game music website more useful for normal people, the goal is to extract as much metadata as possible to make searching better, and to package the data so that it’s as convenient as possible for users. Whenever I seek to add a new format to the collection, this is the phase where I invariably find that I have to fundamentally modify some of the assumptions I originally made in the player.

    First, there were the NES Sound Format (NSF) files, the original format I wanted to play. These are files that have any number of songs packed into a single file. Playback libraries expose APIs to jump to individual tracks. So the player was designed around that. Game Boy GBS files also fall into this category but present a different challenge vis-à-vis metadata, addressed in the next phase.

    Then, there were the SPC files. Each SPC file is its own song and multiple SPC files are commonly bundled as RAR files. Not wanting to deal with RAR, or any format where I interacted with a general compression API to pull a few files out, I created a custom resource format (inspired by so many I have studied and documented) and compressed it with a simpler compression API. I also had to modify some of the player’s assumptions to deal with this archive format. Genesis VGMs, bundled either in .zip or .7z, followed the same model as SPC in RAR.

    Then it was suggested that I attempt to bring SaltyGME closer to feature parity with Chipamp, rather than just being a Chrome browser frontend for Game Music Emu. When I studied the Portable Sound Format (PSF), I realized it didn’t fit into the player model I already had. PSF uses a sort of shared library model for code execution and I developed another resource archive format to cope with it. So that covers quite a few formats.

    One more architecture challenge arose when I started to study one of the prevailing metadata formats, explained in the next phase.

    Phase 5 : Metadata
    Finally, for the collections to really be useful, I need to harvest that juicy metadata for search and presentation.

    I have created a series of programs and scripts to scrape metadata out of these music files and store it all in a database that drives the website and search engine. I recognize that it’s no good to have a large corpus of songs with minimal metadata and while importing bulk quantities of music, the scripts harshly reject songs that have too little metadata.

    Again, challenges abound. One of the biggest challenges I’m facing is the peculiar quasi-freeform metadata format that emerged as .m3u that takes a form similar to :

    #################################################################
    #
    # GRADIUS2
    # (c) KONAMI  by Furukawa Motoaki, IKACHAN
    #
    #################################################################
    

    nemesis2.kss::KSS,62,[Nemesis2] (Opening),2:23,,0
    nemesis2.kss::KSS,61,[Nemesis2] (Start),7,,0
    nemesis2.kss::KSS,43,[Nemesis2] (Air Battle),34,0-
    nemesis2.kss::KSS,44,[Nemesis2] (1st. BGM),51,0-
    [...]

    A lot of file formats (including Game Boy GBS mentioned earlier) store their metadata separately using this format. I have some ideas about tools I can use to help me process this data but I’m pretty sure each one will require some manual intervention.

    As alluded to in phase 4, .m3u presents another architectural challenge : Notice the second field in the CSV .m3u data. That’s a track number. A player can’t expect every track in a bundled chiptune file to be valid, nor to be in any particular order. Thus, I needed to alter the architecture once more to take this into account. However, instead of modifying the SaltyGME player, I simply extended the metadata database to include a playback order which, by default, is the same as the track order but can also accommodate this new issue. This also has the bonus of providing a facility to exclude playback of certain tracks. This comes in handy for many PSF archives which tend to include files that only provide support for other files and aren’t meant to be played on their own.

    Bright Side
    The reward for all of this effort is that the data lands in a proper database in the end. None of it goes back into the chiptune files themselves. This makes further modification easier as all of the data that is indexed and presented on the site comes from the database. Somewhere down the road, I should probably create an API for accessing this metadata.

  • Downscaling a video from 1080p to 480p using swscale and encoding to x265 gives a glitched output

    5 mai 2023, par lokit khemka

    I am basically first scaling a frame and then sending the frame to the encoder as below :

    


    scaled_frame->pts = input_frame->pts;
scaled_frame->pkt_dts = input_frame->pkt_dts;
scaled_frame->pict_type = input_frame->pict_type;
sws_scale_frame(encoder->sws_ctx, scaled_frame, input_frame);
if (encode_video(decoder, encoder, scaled_frame))
     return -1;


    


    The scaling context is configured as :

    


    scaled_frame->width = 854;
scaled_frame->height=480; 
encoder->sws_ctx = sws_getContext(1920, 1080,
                            decoder->video_avcc->pix_fmt, 
                           scaled_frame->width, scaled_frame->height, decoder->video_avcc->pix_fmt, SWS_BICUBIC, NULL, NULL, NULL );
    if (!encoder->sws_ctx){logging("Cannot Create Scaling Context."); return -1;}


    


    The encoder is configured as :

    


        encoder_sc->video_avcc->height = decoder_ctx->height; //1080
    encoder_sc->video_avcc->width = decoder_ctx->width; //1920
    encoder_sc->video_avcc->bit_rate = 2 * 1000 * 1000;
    encoder_sc->video_avcc->rc_buffer_size = 4 * 1000 * 1000;
    encoder_sc->video_avcc->rc_max_rate = 2 * 1000 * 1000;
    encoder_sc->video_avcc->rc_min_rate = 2.5 * 1000 * 1000;

    encoder_sc->video_avcc->time_base = av_inv_q(input_framerate);
    encoder_sc->video_avs->time_base = encoder_sc->video_avcc->time_base;


    


    When I get the output, the output video is 1080p and I have glitches like : enter image description here

    


    I changed the encoder avcc resolution to 480p (854 x 480). However, that is causing the video to get sliced to the top quarter of the original frame.
I am new to FFMPEG and video processing in general.

    


    EDIT : I am adding the minimal reproducible code sample. However, it is really long because I need to include code for decoding, scaling and then encoding because the possible error is either in scaling or encoding :

    


    #include <libavcodec></libavcodec>avcodec.h>&#xA;#include <libavformat></libavformat>avformat.h>&#xA;#include <libavutil></libavutil>timestamp.h>&#xA;#include <libavutil></libavutil>opt.h>&#xA;#include <libswscale></libswscale>swscale.h>&#xA;&#xA;#include &#xA;#include &#xA;&#xA;typedef struct StreamingContext{&#xA;    AVFormatContext* avfc;&#xA;    AVCodec *video_avc;&#xA;    AVCodec *audio_avc;&#xA;    AVStream *video_avs;&#xA;    AVStream *audio_avs;&#xA;    AVCodecContext *video_avcc;&#xA;    AVCodecContext *audio_avcc;&#xA;    int video_index;&#xA;    int audio_index;&#xA;    char* filename;&#xA;    struct SwsContext *sws_ctx;&#xA;}StreamingContext;&#xA;&#xA;&#xA;typedef struct StreamingParams{&#xA;    char copy_video;&#xA;    char copy_audio;&#xA;    char *output_extension;&#xA;    char *muxer_opt_key;&#xA;    char *muxer_opt_value;&#xA;    char *video_codec;&#xA;    char *audio_codec;&#xA;    char *codec_priv_key;&#xA;    char *codec_priv_value;&#xA;}StreamingParams;&#xA;&#xA;void logging(const char *fmt, ...)&#xA;{&#xA;    va_list args;&#xA;    fprintf(stderr, "LOG: ");&#xA;    va_start(args, fmt);&#xA;    vfprintf(stderr, fmt, args);&#xA;    va_end(args);&#xA;    fprintf(stderr, "\n");&#xA;}&#xA;&#xA;int fill_stream_info(AVStream *avs, AVCodec **avc, AVCodecContext **avcc)&#xA;{&#xA;    *avc = avcodec_find_decoder(avs->codecpar->codec_id);&#xA;    if (!*avc)&#xA;    {&#xA;        logging("Failed to find the codec.\n");&#xA;        return -1;&#xA;    }&#xA;&#xA;    *avcc = avcodec_alloc_context3(*avc);&#xA;    if (!*avcc)&#xA;    {&#xA;        logging("Failed to alloc memory for codec context.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    if (avcodec_parameters_to_context(*avcc, avs->codecpar) &lt; 0)&#xA;    {&#xA;        logging("Failed to fill Codec Context.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    if (avcodec_open2(*avcc, *avc, NULL) &lt; 0)&#xA;    {&#xA;        logging("Failed to open Codec.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    return 0;&#xA;}&#xA;&#xA;int open_media(const char *in_filename, AVFormatContext **avfc)&#xA;{&#xA;    *avfc = avformat_alloc_context();&#xA;&#xA;    if (!*avfc)&#xA;    {&#xA;        logging("Failed to Allocate Memory for Format Context");&#xA;        return -1;&#xA;    }&#xA;&#xA;    if (avformat_open_input(avfc, in_filename, NULL, NULL) != 0)&#xA;    {&#xA;        logging("Failed to open input file %s", in_filename);&#xA;        return -1;&#xA;    }&#xA;&#xA;    if (avformat_find_stream_info(*avfc, NULL) &lt; 0)&#xA;    {&#xA;        logging("Failed to get Stream Info.");&#xA;        return -1;&#xA;    }&#xA;}&#xA;&#xA;int prepare_decoder(StreamingContext *sc)&#xA;{&#xA;    for (int i = 0; i &lt; sc->avfc->nb_streams; i&#x2B;&#x2B;)&#xA;    {&#xA;        if (sc->avfc->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO)&#xA;        {&#xA;            sc->video_avs = sc->avfc->streams[i];&#xA;            sc->video_index = i;&#xA;&#xA;            if (fill_stream_info(sc->video_avs, &amp;sc->video_avc, &amp;sc->video_avcc))&#xA;            {&#xA;                return -1;&#xA;            }&#xA;        }&#xA;        else&#xA;        {&#xA;            logging("Skipping Streams other than Video.");&#xA;        }&#xA;    }&#xA;    return 0;&#xA;}&#xA;&#xA;int prepare_video_encoder(StreamingContext *encoder_sc, AVCodecContext *decoder_ctx, AVRational input_framerate,&#xA;                          StreamingParams sp)&#xA;{&#xA;    encoder_sc->video_avs = avformat_new_stream(encoder_sc->avfc, NULL);&#xA;    encoder_sc->video_avc = avcodec_find_encoder_by_name(sp.video_codec);&#xA;    if (!encoder_sc->video_avc)&#xA;    {&#xA;        logging("Cannot find the Codec.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    encoder_sc->video_avcc = avcodec_alloc_context3(encoder_sc->video_avc);&#xA;    if (!encoder_sc->video_avcc)&#xA;    {&#xA;        logging("Could not allocate memory for Codec Context.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    av_opt_set(encoder_sc->video_avcc->priv_data, "preset", "fast", 0);&#xA;    if (sp.codec_priv_key &amp;&amp; sp.codec_priv_value)&#xA;        av_opt_set(encoder_sc->video_avcc->priv_data, sp.codec_priv_key, sp.codec_priv_value, 0);&#xA;&#xA;    encoder_sc->video_avcc->height = decoder_ctx->height;&#xA;    encoder_sc->video_avcc->width = decoder_ctx->width;&#xA;    encoder_sc->video_avcc->sample_aspect_ratio = decoder_ctx->sample_aspect_ratio;&#xA;&#xA;    if (encoder_sc->video_avc->pix_fmts)&#xA;        encoder_sc->video_avcc->pix_fmt = encoder_sc->video_avc->pix_fmts[0];&#xA;    else&#xA;        encoder_sc->video_avcc->pix_fmt = decoder_ctx->pix_fmt;&#xA;&#xA;    encoder_sc->video_avcc->bit_rate = 2 * 1000 * 1000;&#xA;    encoder_sc->video_avcc->rc_buffer_size = 4 * 1000 * 1000;&#xA;    encoder_sc->video_avcc->rc_max_rate = 2 * 1000 * 1000;&#xA;    encoder_sc->video_avcc->rc_min_rate = 2.5 * 1000 * 1000;&#xA;&#xA;    encoder_sc->video_avcc->time_base = av_inv_q(input_framerate);&#xA;    encoder_sc->video_avs->time_base = encoder_sc->video_avcc->time_base;&#xA;&#xA;    &#xA;&#xA;    if (avcodec_open2(encoder_sc->video_avcc, encoder_sc->video_avc, NULL) &lt; 0)&#xA;    {&#xA;        logging("Could not open the Codec.");&#xA;        return -1;&#xA;    }&#xA;    avcodec_parameters_from_context(encoder_sc->video_avs->codecpar, encoder_sc->video_avcc);&#xA;    return 0;&#xA;}&#xA;&#xA;int encode_video(StreamingContext *decoder, StreamingContext *encoder, AVFrame *input_frame)&#xA;{&#xA;    if (input_frame)&#xA;        input_frame->pict_type = AV_PICTURE_TYPE_NONE;&#xA;&#xA;    AVPacket *output_packet = av_packet_alloc();&#xA;    if (!output_packet)&#xA;    {&#xA;        logging("Could not allocate memory for Output Packet.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    int response = avcodec_send_frame(encoder->video_avcc, input_frame);&#xA;&#xA;    while (response >= 0)&#xA;    {&#xA;        response = avcodec_receive_packet(encoder->video_avcc, output_packet);&#xA;        if (response == AVERROR(EAGAIN) || response == AVERROR_EOF)&#xA;        {&#xA;            break;&#xA;        }&#xA;        else if (response &lt; 0)&#xA;        {&#xA;            logging("Error while receiving packet from encoder: %s", av_err2str(response));&#xA;            return -1;&#xA;        }&#xA;&#xA;        output_packet->stream_index = decoder->video_index;&#xA;        output_packet->duration = encoder->video_avs->time_base.den / encoder->video_avs->time_base.num / decoder->video_avs->avg_frame_rate.num * decoder->video_avs->avg_frame_rate.den;&#xA;&#xA;        av_packet_rescale_ts(output_packet, decoder->video_avs->time_base, encoder->video_avs->time_base);&#xA;        response = av_interleaved_write_frame(encoder->avfc, output_packet);&#xA;        if (response != 0)&#xA;        {&#xA;            logging("Error %d while receiving packet from decoder: %s", response, av_err2str(response));&#xA;            return -1;&#xA;        }&#xA;    }&#xA;&#xA;    av_packet_unref(output_packet);&#xA;    av_packet_free(&amp;output_packet);&#xA;&#xA;    return 0;&#xA;}&#xA;&#xA;int transcode_video(StreamingContext *decoder, StreamingContext *encoder, AVPacket *input_packet, AVFrame *input_frame, AVFrame *scaled_frame)&#xA;{&#xA;    int response = avcodec_send_packet(decoder->video_avcc, input_packet);&#xA;    if (response &lt; 0)&#xA;    {&#xA;        logging("Error while sending the Packet to Decoder: %s", av_err2str(response));&#xA;        return response;&#xA;    }&#xA;&#xA;    while (response >= 0)&#xA;    {&#xA;        response = avcodec_receive_frame(decoder->video_avcc, input_frame);&#xA;        &#xA;        if (response == AVERROR(EAGAIN) || response == AVERROR_EOF)&#xA;        {&#xA;            break;&#xA;        }&#xA;        else if (response &lt; 0)&#xA;        {&#xA;            logging("Error while receiving frame from Decoder: %s", av_err2str(response));&#xA;            return response;&#xA;        }&#xA;        if (response >= 0)&#xA;        {&#xA;            scaled_frame->pts = input_frame->pts;&#xA;            scaled_frame->pkt_dts = input_frame->pkt_dts;&#xA;            scaled_frame->pict_type = input_frame->pict_type;&#xA;            sws_scale_frame(encoder->sws_ctx, scaled_frame, input_frame);&#xA;            if (encode_video(decoder, encoder, scaled_frame))&#xA;                return -1;&#xA;        }&#xA;&#xA;        av_frame_unref(input_frame);&#xA;    }&#xA;    return 0;&#xA;}&#xA;&#xA;int main(int argc, char *argv[])&#xA;{&#xA;    StreamingParams sp = {0};&#xA;    sp.copy_audio = 1;&#xA;    sp.copy_video = 0;&#xA;    sp.video_codec = "libx265";&#xA;&#xA;&#xA;    StreamingContext *decoder = (StreamingContext *)calloc(1, sizeof(StreamingContext));&#xA;    decoder->filename = argv[1];&#xA;&#xA;    StreamingContext *encoder = (StreamingContext *)calloc(1, sizeof(StreamingContext));&#xA;    encoder->filename = argv[2];&#xA;&#xA;    if (sp.output_extension)&#xA;    {&#xA;        strcat(encoder->filename, sp.output_extension);&#xA;    }&#xA;&#xA;    if (open_media(decoder->filename, &amp;decoder->avfc))&#xA;        return -1;&#xA;    if (prepare_decoder(decoder))&#xA;        return -1;&#xA;&#xA;    avformat_alloc_output_context2(&amp;encoder->avfc, NULL, NULL, encoder->filename);&#xA;    if (!encoder->avfc)&#xA;    {&#xA;        logging("Could not allocate memory for output Format Context.");&#xA;        return -1;&#xA;    }&#xA;&#xA;        AVRational input_framerate = av_guess_frame_rate(decoder->avfc, decoder->video_avs, NULL);&#xA;        prepare_video_encoder(encoder, decoder->video_avcc, input_framerate, sp);&#xA;&#xA;&#xA;    if (encoder->avfc->oformat->flags &amp; AVFMT_GLOBALHEADER)&#xA;        encoder->avfc->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;&#xA;&#xA;    if (!(encoder->avfc->oformat->flags &amp; AVFMT_NOFILE))&#xA;    {&#xA;        if (avio_open(&amp;encoder->avfc->pb, encoder->filename, AVIO_FLAG_WRITE) &lt; 0)&#xA;        {&#xA;            logging("could not open the output file");&#xA;            return -1;&#xA;        }&#xA;    }&#xA;&#xA;    AVDictionary *muxer_opts = NULL;&#xA;&#xA;    if (sp.muxer_opt_key &amp;&amp; sp.muxer_opt_value)&#xA;    {&#xA;        av_dict_set(&amp;muxer_opts, sp.muxer_opt_key, sp.muxer_opt_value, 0);&#xA;    }&#xA;&#xA;    if (avformat_write_header(encoder->avfc, &amp;muxer_opts) &lt; 0)&#xA;    {&#xA;        logging("an error occurred when opening output file");&#xA;        return -1;&#xA;    }&#xA;&#xA;    AVFrame *input_frame = av_frame_alloc();&#xA;    AVFrame *scaled_frame = av_frame_alloc();&#xA;    if (!input_frame || !scaled_frame)&#xA;    {&#xA;        logging("Failed to allocate memory for AVFrame");&#xA;        return -1;&#xA;    }&#xA;&#xA;    // scaled_frame->format = AV_PIX_FMT_YUV420P;&#xA;    scaled_frame->width = 854;&#xA;    scaled_frame->height=480;    &#xA;&#xA;    //Creating Scaling Context&#xA;    encoder->sws_ctx = sws_getContext(1920, 1080,&#xA;                            decoder->video_avcc->pix_fmt, &#xA;                           scaled_frame->width, scaled_frame->height, decoder->video_avcc->pix_fmt, SWS_BICUBIC, NULL, NULL, NULL );&#xA;    if (!encoder->sws_ctx){logging("Cannot Create Scaling Context."); return -1;}&#xA;&#xA;&#xA;    AVPacket *input_packet = av_packet_alloc();&#xA;    if (!input_packet)&#xA;    {&#xA;        logging("Failed to allocate memory for AVPacket.");&#xA;        return -1;&#xA;    }&#xA;&#xA;    while (av_read_frame(decoder->avfc, input_packet) >= 0)&#xA;    {&#xA;        if (decoder->avfc->streams[input_packet->stream_index]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO)&#xA;        {&#xA;                if (transcode_video(decoder, encoder, input_packet, input_frame, scaled_frame))&#xA;                    return -1;&#xA;                av_packet_unref(input_packet);&#xA;        }&#xA;        else&#xA;        {&#xA;            logging("Ignoring all nonvideo  packets.");&#xA;        }&#xA;    }&#xA;&#xA;    if (encode_video(decoder, encoder, NULL))&#xA;        return -1;&#xA;&#xA;    av_write_trailer(encoder->avfc);&#xA;&#xA;    if (muxer_opts != NULL)&#xA;    {&#xA;        av_dict_free(&amp;muxer_opts);&#xA;        muxer_opts = NULL;&#xA;    }&#xA;&#xA;    if (input_frame != NULL)&#xA;    {&#xA;        av_frame_free(&amp;input_frame);&#xA;        input_frame = NULL;&#xA;    }&#xA;&#xA;    if (input_packet != NULL)&#xA;    {&#xA;        av_packet_free(&amp;input_packet);&#xA;        input_packet = NULL;&#xA;    }&#xA;&#xA;    avformat_close_input(&amp;decoder->avfc);&#xA;&#xA;    avformat_free_context(decoder->avfc);&#xA;    decoder->avfc = NULL;&#xA;    avformat_free_context(encoder->avfc);&#xA;    encoder->avfc = NULL;&#xA;&#xA;    avcodec_free_context(&amp;decoder->video_avcc);&#xA;    decoder->video_avcc = NULL;&#xA;    avcodec_free_context(&amp;decoder->audio_avcc);&#xA;    decoder->audio_avcc = NULL;&#xA;&#xA;    free(decoder);&#xA;    decoder = NULL;&#xA;    free(encoder);&#xA;    encoder = NULL;&#xA;&#xA;    return 0;&#xA;}&#xA;

    &#xA;

    The video I am using for testing is available at the repo : https://github.com/leandromoreira/ffmpeg-libav-tutorial

    &#xA;

    The file name is small_bunny_1080p_60fps.mp4

    &#xA;