
Recherche avancée
Médias (91)
-
Valkaama DVD Cover Outside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
Valkaama DVD Label
4 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Image
-
Valkaama DVD Cover Inside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
1,000,000
27 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Demon Seed
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Four of Us are Dying
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
Autres articles (35)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir
Sur d’autres sites (8977)
-
My SBC Collection
31 décembre 2023, par Multimedia Mike — GeneralLike many computer nerds in the last decade, I have accumulated more than a few single-board computers, or “SBCs”, which are small computers based around a system-on-a-chip (SoC) that nearly always features an ARM CPU at its core. Surprisingly few of these units are Raspberry Pi units, though that brand has come to exemplify and dominate the product category.
Also, as is the case for many computer nerds, most of these SBCs lay fallow for years at a time. Equipped with an inexpensive lightbox that I procured in the last year, I decided I could at least create glamour shots of various units and catalog them in a blog post.
While Raspberry Pi still enjoys the most mindshare far and away, and while I do have a few Raspberry Pi units in my inventory, I have always been a bigger fan of the ODROID brand, which works with convenient importers around the world (in the USA, I can vouch for Ameridroid, to whom I’ve forked over a fair amount of cash for these computing toys).
As mentioned, Raspberry Pi undisputedly has the most mindshare of all these SBC brands and I often wonder why… and then I immediately remind myself that it has the biggest ecosystem, and has a variety of turnkey projects and applications (such as Pi-hole and PiVPN) that promise a lower barrier to entry — as well as a slightly lower price point — than some of these other options. ODROID had a decent ecosystem for awhile, especially considering the monthly ODROID Magazine, though that ceased publication in July 2020. The Raspberry Pi and its variants were famously difficult to come by due to the global chip shortage from 2021-2023. Meanwhile, I had no trouble procuring these boards during the same timeframe.
So let’s delve into the collection…
Cubieboard
The Raspberry Pi came out in 2012 and by 2013 I was somewhat coveting one to hack on. Finally ! An accessible ARM platform to play with. I had heard of the BeagleBoard for years but never tried to get my hands on one. I was thinking about taking the plunge on a new Raspberry Pi, but a colleague told me I should skip that and go with this new hotness called the Cubieboard, based on an Allwinner SoC. The big value-add that this board had vs. a Raspberry Pi was that it had a SATA adapter. Although now that it has been a decade, it only now occurs to me to quander whether it was true SATA or a USB-to-SATA bridge. Looking it up now, I’m led to believe that the SoC supported the functionality natively.Anyway, I did get it up and running but never did much with it, thus setting the tone for future SBC endeavors. No photos because I gave it to another tech enthusiast years ago, whose SBC collection dwarfs my own.
ODROID-XU4
I can’t recall exactly when or how I first encountered the ODROID brand. I probably read about it on some enthusiast page or another circa 2014 and decided to try one out. I eventually acquired a total of 3 of these ODROID-XU4 units, each with a different case, 1 with a fan and 2 passively-cooled :This is based on the Samsung Exynos 5422 SoC, the same series as was used in their Note 3 phone released in 2013. It has been a fun chip to play with. The XU4 was also my first introduction to the eMMC storage solution that is commonly supported on the ODROID SBCs (alongside micro-SD). eMMC offers many benefits over SD in terms of read/write speed as well as well as longevity/write cycles. That’s getting less relevant these days, however, as more and more SBCs are being released with direct NVMe SSD support.
I had initially wanted to make a retro-gaming device built on this platform (see the handheld section later for more meditations on that). In support of this common hobbyist goal, there is this nifty case XU4 case which apes the aesthetic of the Nintendo N64 :
It even has a cool programmable LCD screen. Maybe one day I’ll find a use for it.
For awhile, one of these XU4 units (likely the noisy, fan-cooled one) was contributing results to the FFmpeg FATE system.
While it features gigabit ethernet and a USB3 port, I once tried to see if I could get 2 Gbps throughput with the unit using a USB3-gigabit dongle. I had curious results in that the total amount of traffic throughput could never exceed 1 Gbps across both interfaces. I.e., if 1 interface was dealing with 1 Gbps and the other interface tried to run at 1 Gbps, they would both only run at 500 Mbps. That remains a mystery to me since I don’t see that limitation with Intel chips.
Still, the XU4 has been useful for a variety of projects and prototyping over the years.
ODROID-HC2 NAS
I find that a lot of my fellow nerds massively overengineer their homelab NAS setups. I’ll explore this in a future post. For my part, people tend to find my homelab NAS solution slightly underengineered. This is the ODROID-HC2 (the “HC” stands for “Home Cloud”) :It has the same guts as the ODROID-XU4 except no video output and the USB3 function is leveraged for a SATA bridge. This allows you to plug a SATA hard drive directly into the unit :
Believe it or not, this has been my home NAS solution for something like 6 or 7 years now– I don’t clearly remember when I purchased it and put it into service.
But isn’t this sort of irresponsible ? What about a failure of the main drive ? That’s why I have an external drive connected for backing up the most important data via rsync :
The power consumption can’t be beat– Profiling for a few weeks of average usage worked out to 4.5 kWh for the ODROID-HC2… per month.
ODROID-C2
I was on a kick of ordering more SBCs at one point. This is the ODROID-C2, equipped with a 64-bit Amlogic SoC :I had this on the FATE farm for awhile, performing 64-bit ARM builds (vs. the XU4’s 32-bit builds). As memory serves, it was unreliable and would occasionally freeze up.
Here is a view of the eMMC storage through the bottom of the translucent case :
ODROID-N2+
Out of all my ODROID SBCs, this is the unit that I long to “get back to” the most– the ODROID-N2+ :Very capable unit that makes a great little desktop. I have some projects I want to develop using it so that it will force me to have a focused development environment.
Raspberry Pi
Eventually, I did break down and get a Raspberry Pi. I had a specific purpose in mind and, much to my surprise, I have stuck to it :I was using one of the ODROID-XU4 units as a VPN gateway. Eventually, I wanted to convert the XU4 to something else and I decided to run the VPN gateway as an appliance on the simplest device I could. So I procured this complete hand-me-down unit from eBay and went to work. This was also the first time I discovered the DietPi distribution and this box has been in service running Wireguard via PiVPN for many years.
I also have a Raspberry Pi 3B+ kicking around somewhere. I used it as a Steam Link device for awhile.
SOPINE + Baseboard
Also procured when I was on this “let’s buy random SBCs” kick. The Pine64 SOPINE is actually a compute module that comes in the form factor of a memory module.Back to using Allwinner SoCs. In order to make this thing useful, you need to place it in something. It’s possible to get a mini-ITX form factor board that can accommodate 7 of these modules. Before going to that extreme, there is this much simpler baseboard which can also use eMMC for storage.
I really need to find an appropriate case for this one as it currently performs its duty while sitting on an anti-static bag.
NanoPi NEO3
I enjoy running the DietPi distribution on many of these SBCs (as it’s developed not just for Raspberry Pi). I have also found their website to be a useful resource for discovering new SBCs. That’s how I found the NanoPi series and zeroed in on this NEO3 unit, sporting a Rockchip SoC, and photographed here with some American currency in order to illustrate its relative size :I often forget about this computer because it’s off in another room, just quietly performing its assigned duty.
MangoPi MQ-Pro
So far, I’ve heard of these fruits prepending the Greek letter pi for naming small computing products :- Raspberry – the O.G.
- Banana – seems to be popular for hobbyist router/switches
- Orange
- Atomic
- Nano
- Mango
Okay, so the AtomicPi and NanoPi names don’t really make sense considering the fruit convention.
Anyway, the newest entry is the MangoPi. These showed up on Ameridroid a few months ago. There are 2 variants : the MQ-Pro and the MQ-Quad. I picked one and rolled with it.
When it arrived, I unpacked it, assembled the pieces, downloaded a distro, tossed that on a micro-SD card, connected a monitor and keyboard to it via its USB-C port, got the distro up and running, configured the wireless networking with a static IP address and installed sshd, and it was ready to go as a headless server for an edge application.
The unit came with no instructions that I can recall. After I got it set up, I remember thinking, “What is wrong with me ? Why is it that I just know how to do all of this without any documentation ?”
Only after I got it up and running and poked around a bit did I realize that this SBC doesn’t have an ARM SoC– it’s a RISC-V SoC. It uses the Allwinner D1, so it looks like I came full circle back to Allwinner.
So I now have my first piece of RISC-V hobbyist kit, although I learned recently from Kostya that it’s not that great for multimedia.
Handheld Gaming Units
The folks at Hardkernel have also produced a series of handheld retro-gaming devices called ODROID-GO. The first one resembled the original Nintendo Game Boy, came as a kit to be assembled, and emulated 5 classic consoles. It also had some hackability to it. Quite a cool little device, and inexpensive too. I have since passed it along to another gaming enthusiast.Later came the ODROID-GO Advance, also a kit, but emulating more devices. I was extremely eager to get my hands on this since it could emulate SNES in addition to NES. It also features a headphone jack, unlike the earlier model. True to form, after I received mine, it took me about 13 months before I got around to assembling it. After that, the biggest challenge I had was trying to find an appropriate case for it.
Even though it may try to copy the general aesthetic and form factor of the Game Boy Advance, cases for the GBA don’t fit this correctly.
Further, Hardkernel have also released the ODROID-GO Super and Ultra models that do more and more. The Advance, Super, and Ultra models have powerful SoCs and feature much more hackability than the first ODROID-GO model.
I know that the guts of the Advance have been used in other products as well. The same is likely true for the Super and Ultra.
Ultimately, the ODROID-GO Advance was just another project I assembled and then set aside since I like the idea of playing old games much more than actually doing it. Plus, the fact has finally crystalized in my mind over the past few years that I have never enjoyed handheld gaming and likely will never enjoy handheld gaming, even after I started wearing glasses. Not that I’m averse to old Game Boy / Color / Advance games, but if I’m going to play them, I’d rather emulate them on a large display.
The Future
In some of my weaker moments, I consider ordering up certain Banana Pi products (like the Banana Pi BPI-R2) with a case and doing my own router tricks using some open source router/firewall solution. And then I remind myself that my existing prosumer-type home router is doing just fine. But maybe one day…The post My SBC Collection first appeared on Breaking Eggs And Making Omelettes.
-
2011 In Open Source Multimedia
5 janvier 2012, par Multimedia Mike — Open Source MultimediaSometimes I think that the pace of multimedia technology is slowing down. Obviously, I’m not paying close enough attention. I thought I would do a little 2011 year-end review of what happened in the world of open source multimedia, mainly for my own benefit. Let me know in the comments what I missed.
The Split
The biggest deal in open source multimedia was the matter of the project split. Where once stood one project (FFmpeg) there now stands two (also Libav). Where do things stand with the projects now ? Still very separate but similar. Both projects obsessively monitor each other’s git commits and prodigiously poach each other’s work, both projects being LGPL and all. Most features that land in one code base end up in the other. Thus, I refer to FFmpeg and Libav collectively as “the projects”.Some philosophical reasons for the split included project stagnation and development process friction. Curiously, these problems are fond memories now and the spirit of competition has pushed development forward at a blinding pace.
People inside the project have strong opinions about the split ; that’s understandable. People outside the project have strong opinions about the split ; that’s somewhat less understandable, but whatever. After 5 years of working for Adobe on the Flash Player (a.k.a. the most hated software in all existence if internet nerds are to be believed on the matter), I’m so over internet nerd drama.
For my part, I just try to maintain some appearance of neutrality since I manage some shared resources for the open source multimedia community (like the wiki and samples repo) and am trying to keep them from fracturing as well.
Apple and Open Source
It was big news that Apple magnanimously open sourced their lossless audio codec. That sets a great example and precedent.New Features
I mined the'git log'
of the projects in order to pick out some features that were added during 2011.First off, Apple’s ProRes video codec was reverse engineered and incorporated into the multimedia libraries. And for some weird reason, this is an item that made the rounds in the geek press. I’m not entirely sure why, but it may have something to do with inter-project conflict. Anyway, here is the decoder in action, playing a video of some wild swine, one of the few samples we have :
Other new video codecs included a reverse engineered Indeo 4 decoder. Gotta catch ‘em all ! That completes our collection of Indeo codecs. But that wasn’t enough– this year, we got a completely revised Indeo 3 decoder (the previous one, while functional, exhibited a lot of code artifacts betraying a direct ASM ->C translation). Oh, and many thanks to Kostya for this gem :
That’s the new Origin Xan decoder (best known for Wing Commander IV cinematics) in action, something I first started reverse engineering back in 2002. Thanks to Kostya for picking up my slack yet again.
Continuing with the codec section, there is a decoder for Adobe Flash Screen Video 2 — big congrats on this ! One of my jobs at Adobe was documenting this format to the outside world and I was afraid I could never quite make it clear enough to build a complete re-implementation. But the team came through.
Let’s see, there are decoders for VBLE video, Ut Video, Windows Media Image (WMVP/WMP2), Bink audio version ‘b’, H.264 4:2:2 intra frames, and MxPEG video. There is a DPX image encoder, a Cirrus Logic AccuPak video encoder, and a v410 codec.
How about some more game stuff ? The projects saw — at long last — an SMJPEG demuxer. This will finally allow usage and testing of the SMJPEG IMA ADPCM audio decoder I added about a decade ago. Funny story behind that– I was porting all of my decoders from xine which included the SMJPEG ADPCM. I just never quite got around to writing a corresponding demuxer. Thanks to Paul Mahol for taking care of that.
Here’s a DFA playback system for a 1995 DOS CD-ROM title called Chronomaster. No format is too obscure, nor its encoded contents too cheesy :
There’s now a demuxer for a format called XMV that was (is ?) prevalent on Xbox titles. Now the projects can handle FMV files from many Xbox games, such as Thrillville.
The projects also gained the ability to play BMV files. I think this surfing wizard comes from Discworld II. It’s non-computer-generated animation at a strange resolution.
More demuxers : xWMA, PlayStation Portable PMP format, and CRI ADX format ; muxer for OpenMG audio and LATM muxer/demuxer.
One more thing : an AVX-optimized fast Fourier transform (FFT). If you have a machine that supports AVX, there’s no way you’ll even notice the speed increase of a few measly FFT calls for audio coding/decoding, but that’s hardly the point. The projects always use everything on offer for any CPU.
Please make me aware of features that I missed in the list !
Continuous Testing
As a result of the split, each project has its own FATE server, one for FFmpeg and one for Libav. As of the new year, FFmpeg has just over 1000 tests while Libav had 965. This is one area where I’m obviously ecstatic to see competition. Some ad-hoc measurements on my part indicate that the total code coverage via the FATEs has not appreciably increased. But that’s a total percentage. Both the test count and the code count have been steadily rising.Google Summer of Code and Google Code-In
Once again, the projects were allowed to participate in the Google Summer of Code as well as Google Code-In. I confess that I didn’t keep up with these too carefully (and Code-In is still in progress as of this writing). I do know that the project split occurred after FFmpeg had already been accepted for GSoC season 2011 and the admins were gracious enough to allow FFmpeg and Libav to allow both projects to participate in the same slot as long as they could both be mature about it.Happy New Year
Let’s see what we can accomplish in 2012. -
How to cheat on video encoder comparisons
Over the past few years, practically everyone and their dog has published some sort of encoder comparison. Sometimes they’re actually intended to be something for the world to rely on, like the old Doom9 comparisons and the MSU comparisons. Other times, they’re just to scratch an itch — someone wants to decide for themselves what is better. And sometimes they’re just there to outright lie in favor of whatever encoder the author likes best. The latter is practically an expected feature on the websites of commercial encoder vendors.
One thing almost all these comparisons have in common — particularly (but not limited to !) the ones done without consulting experts — is that they are horribly done. They’re usually easy to spot : for example, two videos at totally different bitrates are being compared, or the author complains about one of the videos being “washed out” (i.e. he screwed up his colorspace conversion). Or the results are simply nonsensical. Many of these problems result from the person running the test not “sanity checking” the results to catch mistakes that he made in his test. Others are just outright intentional.
The result of all these mistakes, both intentional and accidental, is that the results of encoder comparisons tend to be all over the map, to the point of absurdity. For any pair of encoders, it’s practically a given that a comparison exists somewhere that will “prove” any result you want to claim, even if the result would be beyond impossible in any sane situation. This often results in the appearance of a “controversy” even if there isn’t any.
Keep in mind that every single mistake I mention in this article has actually been done, usually in more than one comparison. And before I offend anyone, keep in mind that when I say “cheating”, I don’t mean to imply that everyone that makes the mistake is doing it intentionally. Especially among amateur comparisons, most of the mistakes are probably honest.
So, without further ado, we will investigate a wide variety of ways, from the blatant to the subtle, with which you too can cheat on your encoder comparisons.
Blatant cheating
1. Screw up your colorspace conversions. A common misconception is that converting from YUV to RGB and back is a simple process where nothing can go wrong. This is quite untrue. There are two primary attributes of YUV : PC range (0-255) vs TV range (16-235) and BT.709 vs BT.601 conversion coefficients. That sums up to a total of 4 possible different types of YUV. When people compare encoders, they often use different frontends, some of which make incorrect assumptions about these attributes.
Incorrect assumptions are so common that it’s often a matter of luck whether the tool gets it right or not. It doesn’t help that most videos don’t even properly signal which they are to begin with ! Often even the tool that the person running the comparison is using to view the source material gets the conversion wrong.
Subsampling YUV (aka what everyone uses) adds yet another dimension to the problem : the locations which the chroma data represents (“chroma siting”) isn’t constant. For example, JPEG and MPEG-2 define different positions. This is even worse because almost nobody actually handles this correctly — the best approach is to simply make sure none of your software is doing any conversion. A mistake in chroma siting is what created that infamous PSNR graph showing Theora beating x264, which has been cited for ages since despite the developers themselves retracting it after realizing their mistake.
Keep in mind that the video encoder is not responsible for colorspace conversion — almost all video encoders operate in the YUV domain (usually subsampled 4:2:0 YUV, aka YV12). Thus any problem in colorspace conversion is usually the fault of the tools used, not the actual encoder.
How to spot it : “The color is a bit off” or “the contrast of the video is a bit duller”. There were a staggering number of “H.264 vs Theora” encoder comparisons which came out in favor of one or the other solely based on “how well the encoder kept the color” — making the results entirely bogus.
2. Don’t compare at the same (or nearly the same) bitrate. I saw a VP8 vs x264 comparison the other day that gave VP8 30% more bitrate and then proceeded to demonstrate that it got better PSNR. You would think this is blindingly obvious, but people still make this mistake ! The most common cause of this is assuming that encoders will successfully reach the target bitrate you ask of them — particularly with very broken encoders that don’t. Always check the output filesizes of your encodes.
How to spot it : The comparison lists perfectly round bitrates for every single test, as opposed to the actual bitrates achieved by the encoders, which will never be exactly matching in any real test.
3. Use unfair encoding settings. This is a bit of a wide topic : there are many ways to do this. We’ll cover the more blatant ones in this part. Here’s some common ones :
a. Simply cheat. Intentionally pick awful settings for the encoder you don’t like.
b. Don’t consider performance. Pick encoding settings without any regard for some particular performance goal. For example, it’s perfectly reasonable to say “use the best settings possible, regardless of speed”. It’s also reasonable to look for a particular encoding speed target. But what isn’t reasonable is to pick extremely fast settings for one encoder and extremely slow settings for another encoder.
c. Don’t attempt match compatibility options when it’s reasonable to do so. Keyframe interval is a classic one of these : shorter values reduce compression but improve seeking. An easy way to cheat is to simply not set them to the same value, biasing towards whatever encoder has the longer interval. This is most common as an accidental mistake with comparisons involving ffmpeg, where the default keyframe interval is an insanely low 12 frames.
How to spot it : The comparison doesn’t document its approach regarding choice of encoding settings.
4. Use ratecontrol methods unfairly. Constant bitrate is not the same as average bitrate — using one instead of the other is a great way to completely ruin a comparison. Another method is to use 1-pass bitrate mode for one encoder and 2-pass or constant quality for another. A good general approach is that, for any given encoder, one should use 2-pass if available and constant quality if not (it may take a few runs to get the bitrate you want, of course).
Of course, it’s also fine to run a comparison with a particular mode in mind — for example, a comparison targeted at streaming applications might want to test using 1-pass CBR. Of course, in such a case, if CBR is not available in an encoder, you can’t compare to that encoder.
How to spot it : It’s usually pretty obvious if the encoding settings are given.
5. Use incredibly old versions of encoders. As it happens, Debian stable is not the best source for the most recent encoding software. Equally, using recent versions known to be buggy.
6. Don’t distinguish between video formats and the software that encodes them. This is incredibly common : I’ve seen tests that claim to compare “H.264″ against something else while in fact actually comparing “Quicktime” against something else. It’s impossible to compare all H.264 encoders at once, so don’t even try — just call the comparison “Quicktime versus X” instead of “H.264 versus X”. Or better yet, use a good H.264 encoder, like x264 and don’t bother testing awful encoders to begin with.
Less-obvious cheating
1. Pick a bitrate that’s way too low. Low bitrate testing is very effective at making differences between encoders obvious, particularly if doing a visual comparison. But past a certain point, it becomes impossible for some encoders to keep up. This is usually an artifact of the video format itself — a scalability limitation. Practically all DCT-based formats have this kind of limitation (wavelets are mostly immune).
In reality, this is rarely a problem, because one could merely downscale the video to resolve the problem — lower resolutions need fewer bits. But people rarely do this in comparisons (it’s hard to do it fairly), so the best approach is to simply not use absurdly low bitrates. What is “absurdly low” ? That’s a hard question — it ends up being a matter of using one’s best judgement.
This tends to be less of a problem in larger-scale tests that use many different bitrates.
How to spot it : At least one of the encoders being compared falls apart completely and utterly in the screenshots.
Biases towards, a lot : Video formats with completely scalable coding methods (Dirac, Snow, JPEG-2000, SVC).
Biases towards, a little : Video formats with coding methods that improve scalability, such as arithmetic coding, B-frames, and run-length coding. For example, H.264 and Theora tend to be more scalable than MPEG-4.
2. Pick a bitrate that’s way too high. This is staggeringly common mistake : pick a bitrate so high that all of the resulting encodes look absolutely perfect. The claim is then made that “there’s no significant difference” between any of the encoders tested. This is surprisingly easy to do inadvertently on sources like Big Buck Bunny, which looks transparent at relatively low bitrates. An equally common but similar mistake is to test at a bitrate that isn’t so high that the videos look perfect, but high enough that they all look very good. The claim is then made that “the difference between these encoders is small”. Well, of course, if you give everything tons of bitrate, the difference between encoders is small.
How to spot it : You can’t tell which image is the source and which is the encode.
3. Making invalid comparisons using objective metrics. I explained this earlier in the linked blog post, but in short, if you’re going to measure PSNR, make sure all the encoders are optimized for PSNR. Equally, if you’re going to leave the encoder optimized for visual quality, don’t measure PSNR — post screenshots instead. Same with SSIM or any other objective metric. Furthermore, don’t blindly do metric comparisons — always at least look at the output as a sanity test. Finally, do not claim that PSNR is particularly representative of visual quality, because it isn’t.
How to spot it : Encoders with psy optimizations, such as x264 or Theora 1.2, do considerably worse than expected in PSNR tests, but look much better in visual comparisons.
4. Lying with graphs. Using misleading scales on graphs is a great way to make the differences between encoders seem larger or smaller than they actually are. A common mistake is to scale SSIM linearly : in fact, 0.99 is about twice as good as 0.98, not 1% better. One solution for this is to use db to compare SSIM values.
5. Using lossy screenshots. Posting screenshots as JPEG is a silly, pointless way to worsen an encoder comparison.
Subtle cheating
1. Unfairly pick screenshots for comparison. Comparing based on stills is not ideal, but it’s often vastly easier than comparing videos in motion. But it also opens up the door to unfairness. One of the most common mistakes is to pick a frame immediately after (or on) a keyframe for one encoder, but which isn’t for the other encoder. Particularly in the case of encoders that massively boost keyframe quality, this will unfairly bias in favor of the one with the recent keyframe.
How to spot it : It’s very difficult to tell, if not impossible, unless they provide the video files to inspect.
2. Cherry-pick source videos. Good source videos are incredibly hard to come by — almost everything is already compressed and what’s left is usually a very poor example of real content. Here’s some common ways to bias unfairly using cherry-picking :
a. Pick source videos that are already heavily compressed. Pre-compressed source isn’t much of an issue if your target quality level for testing is much lower than that of the source, since any compression artifacts in the source will be a lot smaller than those created by the encoders. But if the source is already very compressed, or you’re testing at a relatively high quality level, this becomes a significant issue.
Biases towards : Anything that uses a similar transform to the source content. For MPEG-2 source material, this biases towards formats that use the 8x8dct or a very close approximation : MPEG-1/2/4, H.263, and Theora. For H.264 source material, this biases towards formats that use a 4×4 transform : H.264 and VP8.
b. Pick standard test clips that were not intended for this purpose. There are a wide variety of uncompressed “standard test clips“. Some of these are not intended for general-purpose use, but rather exist to test specific encoder capabilities. For example, Mobile Calendar (“mobcal”) is extremely sharp and low motion, serving to test interpolation capabilities. It will bias incredibly heavily towards whatever encoder uses more B-frames and/or has higher-precision motion compensation. Other test clips are almost completely static, such as the classic “akiyo”. These are also not particularly representative of real content.
c. Pick very noisy content. Noise is — by definition — not particularly compressible. Both in terms of PSNR and visual quality, a very noisy test clip will tend to reduce the differences between encoders dramatically.
d. Pick a test clip to exercise a specific encoder feature. I’ve often used short clips from Touhou games to demonstrate the effectiveness of x264′s macroblock-tree algorithm. I’ve sometimes even used it to compare to other encoders as part of such a demonstration. I’ve also used the standard test clip “parkrun” as a demonstration of adaptive quantization. But claiming that either is representative of most real content — and thus can be used as a general determinant of how good encoders are — is of course insane.
e. Simply encode a bunch of videos and pick the one your favorite encoder does best on.
3. Preprocessing the source. A encoder test is a test of encoders, not preprocessing. Some encoding apps may add preprocessors to the source, such as noise reduction. This may make the video look better — possibly even better than the source — but it’s not a fair part of comparing the actual encoders.
4. Screw up decoding. People often forget that in addition to encoding, a test also involves decoding — a step which is equally possible to do wrong. One common error caused by this is in tests of Theora on content whose resolution isn’t divisible by 16. Decoding is often done with ffmpeg — which doesn’t crop the edges properly in some cases. This isn’t really a big deal visually, but in a PSNR comparison, misaligning the entire frame by 4 or 8 pixels is a great way of completely invalidating the results.
The greatest mistake of all
Above all, the biggest and most common mistake — and the one that leads to many of the problems mentioned here – is the mistaken belief that one, or even a few tests can really represent all usage fairly. Any comparison has to have some specific goal — to compare something in some particular case, whether it be “maximum offline compression ignoring encoding speed” or “real-time high-speed video streaming” or whatnot. And even then, no comparison can represent all use-cases in that category alone. An encoder comparison can only be honest if it’s aware of its limitations.