Recherche avancée

Médias (91)

Autres articles (67)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

Sur d’autres sites (6729)

  • FFMpegCore.Exceptions.FFMpegException : 'ffmpeg exited with non-zero exit-code'

    15 octobre 2024, par secretply

    I am looking to retrieve the loudnorm data in JSON format from FFmpeg (using FFMpegCore 5.1.0). This is the code I currently have :

    


    await FFMpegArguments
    .FromPipeInput(new StreamPipeSource(fileStream.OpenReadStream()))
    .OutputToPipe(new StreamPipeSink(outputStream), options => options.WithCustomArgument("-af loudnorm=print_format=json"))
    .ProcessAsynchronously();


    


    This is the exception I get, which is similar to this old GitHub issue.

    


    System.IO.IOException: 'Pipe is broken.'

This exception was originally thrown at this call stack:
    System.IO.Pipes.PipeStream.PipeValueTaskSource.GetResult(short)
    System.IO.Pipes.PipeStream.PipeValueTaskSource.System.Threading.Tasks.Sources.IValueTaskSource.GetResult(short)
    System.IO.Stream.CopyToAsync.__Core|27_0(System.IO.Stream, System.IO.Stream, int, System.Threading.CancellationToken) in Stream.cs
    FFMpegCore.Arguments.InputPipeArgument.ProcessDataAsync(System.Threading.CancellationToken)
    FFMpegCore.Arguments.PipeArgument.During(System.Threading.CancellationToken)
    FFMpegCore.FFMpegArguments.During(System.Threading.CancellationToken)
    FFMpegCore.FFMpegArgumentProcessor.Process(Instances.ProcessArguments, System.Threading.CancellationTokenSource)
    FFMpegCore.FFMpegArgumentProcessor.ProcessAsynchronously(bool, FFMpegCore.FFOptions)


    


    I am trying to replicate the following FFmpeg command and JSON output :

    


    ffmpeg -i "file.flac" -af loudnorm=print_format=json -f null -


    


    {
        "input_i" : "-21.87",
        "input_tp" : "-7.13",
        "input_lra" : "5.00",
        "input_thresh" : "-32.04",
        "output_i" : "-24.76",
        "output_tp" : "-10.36",
        "output_lra" : "4.10",
        "output_thresh" : "-34.84",
        "normalization_type" : "dynamic",
        "target_offset" : "0.76"
}


    


    If I add .ForceFormat("null") to the OutputToPipe options, I do not get the exception but when I read the output stream, it returns an empty string. In the issue mentioned, I know they mentioned a way to get the FFMpegErrorOutput property but I do not know how that can be done. I could not find an example of outputting a stream as JSON. If anyone can point me in the right direction or can provide an alternative solution, I would greatly appreciate it.

    


    Update

    


    I made a change to the StreamPipeSource() method where I copied over the uploaded file to a MemoryStream. With this change, the following FFMpegException is thrown.

    


    FFMpegCore.Exceptions.FFMpegException: 'ffmpeg exited with non-zero exit-code (-22 - ffmpeg version 7.0.1-full_build-www.gyan.dev Copyright (c) 2000-2024 the FFmpeg developers
  built with gcc 13.2.0 (Rev5, Built by MSYS2 project)
  configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libaribcaption --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libxevd --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxeve --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-dxva2 --enable-d3d11va --enable-d3d12va --enable-ffnvcodec --enable-libvpl --enable-nvdec --enable-nvenc --enable-vaapi --enable-libshaderc --enable-vulkan --enable-libplacebo --enable-opencl --enable-libcdio --enable-libgme --enable-libmodplug --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libshine --enable-libtheora --enable-libtwolame --enable-libvo-amrwbenc --enable-libcodec2 --enable-libilbc --enable-libgsm --enable-libopencore-amrnb --enable-libopus --enable-libspeex --enable-libvorbis --enable-ladspa --enable-libbs2b --enable-libflite --enable-libmysofa --enable-librubberband --enable-libsoxr --enable-chromaprint
  libavutil      59.  8.100 / 59.  8.100
  libavcodec     61.  3.100 / 61.  3.100
  libavformat    61.  1.100 / 61.  1.100
  libavdevice    61.  1.100 / 61.  1.100
  libavfilter    10.  1.100 / 10.  1.100
  libswscale      8.  1.100 /  8.  1.100
  libswresample   5.  1.100 /  5.  1.100
  libpostproc    58.  1.100 / 58.  1.100
[in#0 @ 000001bda86c67c0] Error opening input: Invalid argument
Error opening input file \\.\pipe\FFMpegCore_c6e5c.
Error opening input files: Invalid argument)'


    


  • Privacy-friendly analytics : The benefits of an ethical, GDPR-compliant platform

    13 juin, par Joe

    Your visitors shouldn’t feel like you’re spying on them — even if you’re just trying to improve the user experience or track your marketing efforts. 

    While many analytics platforms make customers feel that way thanks to intrusive cookie consent banners and highly personalised ads, there is a growing movement towards ethical, privacy-friendly analytics.

    In this article, you’ll learn what privacy-friendly analytics is, why it matters, what to look for in a solution and which of the leading providers is right for you. 

    What is privacy-friendly analytics ? 

    Privacy-friendly analytics is a form of website analytics that collects and analyses data in a way that respects the user’s privacy. It’s a type of ethical web analytics.

    Privacy-friendly platforms limit personal data collection and anonymise individual user data while being transparent about collection and tracking methods. They help companies adhere to data protection laws (like GDPR, CCPA, and HIPAA) and new privacy laws (like OCPA, FDBR, and TDPSA) without configuring custom settings. 

    Why use privacy-friendly analytics ? 

    Millions of businesses choose privacy-friendly analytics platforms like Matomo. Here are a few reasons why : 

    Build trust with customers

    Research shows that the vast majority of consumers don’t trust companies with their data, believing that they prioritise profits over data protection. 

    Privacy-friendly analytics can help businesses prove they aren’t out to profit from consumer data and regain customer trust. This can ultimately boost revenue. According to Cisco’s Data Privacy Benchmark Study, organisations gain $180 for every $100 spent on privacy. 

    Comply with privacy regulations

    Data privacy regulations, such as GDPR, protect consumer privacy and establish strict rules governing how businesses can collect and use personal data.

    The cost of non-compliance is high. Under GDPR, fines can be up to €20 million, or 4% of worldwide annual revenue.

    Thanks to features like data anonymisation and the default use of first-party cookies, privacy-friendly analytics platforms can support and strengthen compliance efforts. 

    In fact, the French Data Protection Authority (CNIL) approved Matomo as one of the only web analytics tools to collect data without tracking consent.

    Minimise the impact of a breach

    According to IBM’s Cost of a Data Breach report, the average cost of a data breach is nearly $4.5 million. The more personally identifiable information (PII) is involved, the higher the fines and penalties. 

    A privacy-friendly analytics tool can reduce the potential impact of a breach by minimising the amount of personal information you hold. 

    Is Google Analytics privacy-friendly ?

    Google may be the best-known analytics platform, but it’s not the best choice for businesses that want to collect data responsibly and ethically. 

    Here are just a few of Google Analytics’s privacy issues :

    • It uses analytics data to run its advertising business.
    • It may train large language models like Gemini with analytics data.
    • It requires a specific setup to be GDPR compliant that isn’t available out of the box.

    Google Analytics’s ongoing issues with privacy laws like GDPR also raise doubt. The French and Austrian Data Protection Authorities have banned Google Analytics in the past, and there is no guarantee they won’t do so again. 

    What to look for in privacy-friendly analytics ?

    Several privacy-friendly analytics tools are available. To find the right one for your brand, look for the following features.

    Data ownership

    Choose a provider that gives you as much control over your users’ data as possible. Ideally, this will be via an on-site solution where you store data on your servers. For cloud-based options, ensure your analytics provider can’t access, use or sell it.

    With 100% data ownership, you have the power to protect your users’ privacy. You know where your customer data is stored and what’s happening to it without external influence.

    Open source

    The only genuinely privacy-friendly software is open-source software. Open-source software means anyone can review the code to ensure it does what it promises — in this case, maximising privacy. 

    Matomo is an open-source software company. Our source code is on GitHub, where everyone can see precisely how our platform tracks and stores user data. A community of developers also regularly examines and reviews our code to further strengthen security. 

    Data anonymisation 

    Privacy-friendly analytics should allow marketers to completely anonymise the data they collect. They achieve this through several techniques like IP anonymisation and pseudonymised user IDs that modify or remove personally identifiable data so it can’t be linked to individuals.

    Data anonymisation settings Matomo

    Matomo’s data anonymisation settings 

    In Matomo, for example, you can anonymise the following things in the platform’s Privacy settings :

    • IP address
    • Location
    • User ID

    IP address anonymisation is enabled by default in Matomo.

    No data sampling 

    Data sampling involves extrapolating analytics reports from an incomplete data set. Google Analytics uses this practice and relies on estimates, leading to incomplete and potentially inaccurate results.

    Privacy-friendly analytics should provide 100% accurate insights without making assumptions about your users’ data.

    GDPR compliance

    Privacy-friendly web analytics platforms adhere to even the strictest privacy laws, including GDPR, HIPAA and CCPA, thanks to the following features :

    • Data anonymisation
    • Cookieless tracking
    • EU data storage
    • First-party cookies by default
    Data subject access request setting Matomo

    Matomo data subject access request settings
    (Image Source)

    Privacy-first platforms also make it easy for companies to fulfil data subject access requests. In Matomo, for example, a dedicated feature lets you find, download and delete all of the data you hold about specific individuals. 

    Cookieless tracking

    Cookieless tracking is a form of visitor tracking that uses methods other than cookies to identify individual users. It is more privacy-friendly because no personal data is collected, and users can withhold consent from cookie banners.

    Matomo uses the most privacy-friendly industry-leading cookieless tracking method, config_id, to anonymously track visitors without fingerprinting them. 

    Top 3 privacy-friendly analytics platforms

    We’ve shortlisted three of the leading privacy-friendly analytics platforms. Learn what they offer, what makes them different and how much they cost.

    Matomo

    Matomo is an open-source web analytics tool and privacy-focused Google Analytics alternative trusted by over one million sites in over 190 countries and over 50 languages. 

    Matomo dashboard

    Matomo dashboard

    Matomo prioritises privacy and keeping businesses compliant with global privacy regulations like GDPR, CCPA and HIPAA. The data you collect is 100% accurate and yours alone. We don’t share it or use it for other purposes. 

    Benefits

    • Matomo’s all-in-one solution offers traditional web and behavioural analytics, such as heatmaps and session recordings. It also includes a free, open-source tag manager
    • Matomo gives you the choice of where to store your user’s data. With Matomo Cloud, that’s in our European servers. With Matomo On-Premise, that’s on your servers.
    • Matomo is open-source. Hundreds of independent developers have reviewed our code, and you can view it yourself on GitHub.

    Pricing 

    Hosting Matomo On-Premise is free, while Matomo Cloud costs $26 per month. 

    Fathom

    Fathom Analytics is a simple, easy-to-use alternative to Google Analytics that puts a premium on privacy. 

    Fathom dashboard

    Fathom dashboard
    (Image Source)

    Fathom has made its platform as easy to use as possible. You can install Fathom on any website or CMS using a single line of code. It also means the platform won’t massively impact your site’s speed or SEO performance. 

    Benefits

    • Fathom complies with all major privacy regulations, including GDPR and CCPA.
    • Fathom doesn’t sample data. It also blocks bots and scrapers, so you only see human visitors.
    • Fathom anonymises IP addresses, so you don’t have to show cookie banners.

    Drawbacks

    • Fathom doesn’t offer many of Matomo’s advanced features like e-commerce tracking, heatmaps, and session recordings.
    • The premium version of Fathom is not open-source. 

    Pricing 

    From $15 per month.

    Plausible

    Plausible Analytics is an open-source, privacy-friendly analytics tool built and hosted in the EU.

    Plausible dashboard

    Plausible dashboard
    (Image Source)

    The platform launched in 2019 as a lightweight, easy-to-use alternative to Google Analytics. Its simplicity is a big selling point. Instead of dozens of menus, it presents the information you need on a single page.

    Benefits

    • Plausible boasts an ultra-lightweight script, which means it has a minimal impact on page loading times. 
    • Plausible is GDPR and CCPA-compliant by design, so there’s no need for cookie banners.
    • Plausible is an open-source software with the source code available on GitHub.

    Drawbacks

    • Plausible lacks advanced privacy controls like a GDPR manager.
    • It has none of Matomo’s advanced features like A/B testing, session recordings or heatmaps. 

    Pricing 

    From $9 per month

    Try Matomo for free

    Ready to try a privacy-friendly analytics solution ? Making the switch is easy with Matomo, as it’s one of the only platforms to import historical Google Analytics data. You can also try Matomo for free for 21 days — no credit card required. 

  • How to combine 100 video clips with transition using FFMPEG ? [closed]

    17 octobre 2024, par Muhammad Lutfi Rahmawan

    I've been working on project which involves FFMPEG to process video. The goal is to produce a video from several clips and combine them with transition to each clips. We've succeeded to create video from 20 clips and 19 transitions are applied to merge each clips. But when it comes to a larger amount of clips, say 50, it becomes be failed.

    


    The first thing we do is split the original video into several clips based on user selection and this command is successful (log splitting). Then we combine the clips with transition using below command.

    


    Here is the sample command of FFMPEG which failed :

    


    ffmpeg -y -i /tmp/0.mp4 -i /tmp/1.mp4 -i /tmp/2.mp4 -i /tmp/3.mp4 -i /tmp/4.mp4 -i /tmp/5.mp4 -i /tmp/6.mp4 -i /tmp/7.mp4 -i /tmp/8.mp4 -i /tmp/9.mp4 -i /tmp/10.mp4 -i /tmp/11.mp4 -i /tmp/12.mp4 -i /tmp/13.mp4 -i /tmp/14.mp4 -i /tmp/15.mp4 -i /tmp/16.mp4 -i /tmp/17.mp4 -i /tmp/18.mp4 -i /tmp/19.mp4 -i /tmp/20.mp4 -i /tmp/21.mp4 -i /tmp/22.mp4 -i /tmp/23.mp4 -i /tmp/24.mp4 -i /tmp/25.mp4 -i /tmp/26.mp4 -i /tmp/27.mp4 -i /tmp/28.mp4 -i /tmp/29.mp4 -i /tmp/30.mp4 -i /tmp/31.mp4 -i /tmp/32.mp4 -i /tmp/33.mp4 -i /tmp/34.mp4 -i /tmp/35.mp4 -i /tmp/36.mp4 -i /tmp/37.mp4 -i /tmp/38.mp4 -i /tmp/39.mp4 -i /tmp/40.mp4 -i /tmp/41.mp4 -i /tmp/42.mp4 -i /tmp/43.mp4 -i /tmp/44.mp4 -i /tmp/45.mp4 -i /tmp/46.mp4 -i /tmp/47.mp4 -i /tmp/48.mp4 -i /tmp/49.mp4 -filter_complex "[0:v][1:v]xfade=transition=circlecrop:duration=0.5:offset=24.474[tv0];[0:a][1:a]acrossfade=d=0.5[ta0];[tv0][2:v]xfade=transition=circlecrop:duration=0.5:offset=31.674[tv1];[ta0][2:a]acrossfade=d=0.5[ta1];[tv1][3:v]xfade=transition=circlecrop:duration=0.5:offset=37.234[tv2];[ta1][3:a]acrossfade=d=0.5[ta2];[tv2][4:v]xfade=transition=circlecrop:duration=0.5:offset=55.348[tv3];[ta2][4:a]acrossfade=d=0.5[ta3];[tv3][5:v]xfade=transition=circlecrop:duration=0.5:offset=76.07[tv4];[ta3][5:a]acrossfade=d=0.5[ta4];[tv4][6:v]xfade=transition=circlecrop:duration=0.5:offset=82.622[tv5];[ta4][6:a]acrossfade=d=0.5[ta5];[tv5][7:v]xfade=transition=circlecrop:duration=0.5:offset=103.122[tv6];[ta5][7:a]acrossfade=d=0.5[ta6];[tv6][8:v]xfade=transition=circlecrop:duration=0.5:offset=114.502[tv7];[ta6][8:a]acrossfade=d=0.5[ta7];[tv7][9:v]xfade=transition=circlecrop:duration=0.5:offset=122.258[tv8];[ta7][9:a]acrossfade=d=0.5[ta8];[tv8][10:v]xfade=transition=circlecrop:duration=0.5:offset=130.094[tv9];[ta8][10:a]acrossfade=d=0.5[ta9];[tv9][11:v]xfade=transition=circlecrop:duration=0.5:offset=134.33[tv10];[ta9][11:a]acrossfade=d=0.5[ta10];[tv10][12:v]xfade=transition=circlecrop:duration=0.5:offset=141.85[tv11];[ta10][12:a]acrossfade=d=0.5[ta11];[tv11][13:v]xfade=transition=circlecrop:duration=0.5:offset=145.59[tv12];[ta11][13:a]acrossfade=d=0.5[ta12];[tv12][14:v]xfade=transition=circlecrop:duration=0.5:offset=154.314[tv13];[ta12][14:a]acrossfade=d=0.5[ta13];[tv13][15:v]xfade=transition=circlecrop:duration=0.5:offset=155.998[tv14];[ta13][15:a]acrossfade=d=0.5[ta14];[tv14][16:v]xfade=transition=circlecrop:duration=0.5:offset=164.924[tv15];[ta14][16:a]acrossfade=d=0.5[ta15];[tv15][17:v]xfade=transition=circlecrop:duration=0.5:offset=168.184[tv16];[ta15][17:a]acrossfade=d=0.5[ta16];[tv16][18:v]xfade=transition=circlecrop:duration=0.5:offset=174.796[tv17];[ta16][18:a]acrossfade=d=0.5[ta17];[tv17][19:v]xfade=transition=circlecrop:duration=0.5:offset=186.724[tv18];[ta17][19:a]acrossfade=d=0.5[ta18];[tv18][20:v]xfade=transition=circlecrop:duration=0.5:offset=191.23[tv19];[ta18][20:a]acrossfade=d=0.5[ta19];[tv19][21:v]xfade=transition=circlecrop:duration=0.5:offset=195.778[tv20];[ta19][21:a]acrossfade=d=0.5[ta20];[tv20][22:v]xfade=transition=circlecrop:duration=0.5:offset=198.118[tv21];[ta20][22:a]acrossfade=d=0.5[ta21];[tv21][23:v]xfade=transition=circlecrop:duration=0.5:offset=201.506[tv22];[ta21][23:a]acrossfade=d=0.5[ta22];[tv22][24:v]xfade=transition=circlecrop:duration=0.5:offset=204.422[tv23];[ta22][24:a]acrossfade=d=0.5[ta23];[tv23][25:v]xfade=transition=circlecrop:duration=0.5:offset=210.243[tv24];[ta23][25:a]acrossfade=d=0.5[ta24];[tv24][26:v]xfade=transition=circlecrop:duration=0.5:offset=215.417[tv25];[ta24][26:a]acrossfade=d=0.5[ta25];[tv25][27:v]xfade=transition=circlecrop:duration=0.5:offset=219.057[tv26];[ta25][27:a]acrossfade=d=0.5[ta26];[tv26][28:v]xfade=transition=circlecrop:duration=0.5:offset=221.277[tv27];[ta26][28:a]acrossfade=d=0.5[ta27];[tv27][29:v]xfade=transition=circlecrop:duration=0.5:offset=224.875[tv28];[ta27][29:a]acrossfade=d=0.5[ta28];[tv28][ta28][30:v][30:a][31:v][31:a][32:v][32:a][33:v][33:a][34:v][34:a][35:v][35:a][36:v][36:a][37:v][37:a][38:v][38:a][39:v][39:a][40:v][40:a][41:v][41:a][42:v][42:a][43:v][43:a][44:v][44:a][45:v][45:a][46:v][46:a][47:v][47:a][48:v][48:a][49:v][49:a]concat=n=21:v=1:a=1[v][a]" -map "[v]" -map "[a]" /tmp/export-clip-94989d271066ace00459-9ba57089-d833-4cef-beb7-3c847e9958af.mp4


    


    The error is as follows :

    


    ffmpeg version 7.1 Copyright (c) 2000-2024 the FFmpeg developers\n  built with gcc 13 (Ubuntu 13.2.0-23ubuntu4)\n  configuration: --disable-debug --disable-doc --disable-ffplay --enable-alsa --enable-cuda-llvm --enable-cuvid --enable-ffprobe --enable-gpl --enable-libaom --enable-libass --enable-libdav1d --enable-libfdk_aac --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-libkvazaar --enable-liblc3 --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libopus --enable-libplacebo --enable-librav1e --enable-librist --enable-libshaderc --enable-libsrt --enable-libsvtav1 --enable-libtheora --enable-libv4l2 --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpl --enable-libvpx --enable-libvvenc --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzimg --enable-libzmq --enable-nonfree --enable-nvdec --enable-nvenc --enable-opencl --enable-openssl --enable-stripping --enable-vaapi --enable-vdpau --enable-version3 --enable-vulkan\n  libavutil      59. 39.100 / 59. 39.100\n  libavcodec     61. 19.100 / 61. 19.100\n  libavformat    61.  7.100 / 61.  7.100\n  libavdevice    61.  3.100 / 61.  3.100\n  libavfilter    10.  4.100 / 10.  4.100\n  libswscale      8.  3.100 /  8.  3.100\n  libswresample   5.  3.100 /  5.  3.100\n  libpostproc    58.  3.100 / 58.  3.100\n[mov,mp4,m4a,3gp,3g2,mj2 @ 0x56102f0e5580] moov atom not found\n[in#0 @ 0x56102f0ed480] Error opening input: Invalid data found when processing input\nError opening input file /tmp/0.mp4.\nError opening input files: Invalid data found when processing input\n


    


    It stated that /tmp/0.mp4 has invalid data moov atom not found

    


    This only occurs when the number of clips > 20

    


    Additional info :

    


      

    • I can run without any error in my local environment using Windows 11 (FFMPEG version N-114902-g277f051ff6-20240421)
    • 


    • It fails on AWS Fargate environment using Ubuntu base image docker (FFMPEG version 7.1)
    • 


    


    I hope I can get a solutive answer based on my case at least I get what is wrong with my approach