Recherche avancée

Médias (1)

Mot : - Tags -/publicité

Autres articles (104)

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Contribute to a better visual interface

    13 avril 2011

    MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
    Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community.

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

Sur d’autres sites (7836)

  • Output file does not show up after executing ffmpeg command [closed]

    19 février 2024, par davai

    I'm using ffmpeg to combine an MP3 + G file and produce an MP4 file. I've placed the source code / .exe file for 'ffmpeg' in the project folder, and the MP3 + G files are also in the project folder. I also set the MP4 output to show up in the project folder as well. The weird thing is that, initially, I was producing output files, and while trying to tweak the constant rate factor, the MP4 output just stopped showing up entirely. I'm also not receiving any errors while running the code, and it does print out that the file has been successfully created, despite nothing showing up in the project folder.

    


    
        String mp3FilePath = "C:/Users/exampleuser/pfolder/example.mp3";
        String gFilePath = "C:/Users/exampleuser/pfolder/example.cdg";
        String mp4OutputPath = "C:/Users/exampleuser/pfolder/example.mp4";

        try
        {
            String[] command = {
                    "C:/Users/tonih/IdeaProjects/MP3GtoMP4Conversion/ffmpeg/ffmpeg-2024-02-19-git-0c8e64e268-full_build/bin/ffmpeg.exe",
                    "-i", mp3FilePath,       // Input MP3 file
                    "-r", "25",              // Frame rate
                    "-loop", "1",            // Loop input video
                    "-i", gFilePath,         // Input G file
                    "-c:v", "libx264",       // Video codec
                    "-preset", "slow",       // Encoding preset for quality (choose according to your requirement)
                    "-crf", "18",            // Constant Rate Factor (lower is higher quality, typical range 18-28)
                    "-c:a", "aac",           // Audio codec
                    "-b:a", "320k",          // Audio bitrate
                    "-shortest",             // Stop when the shortest stream ends
                    mp4OutputPath            // Output MP4 file
            };

            Process process = Runtime.getRuntime().exec(command);
            process.waitFor();
            System.out.println("MP4 file created successfully: " + mp4OutputPath);
        }
        catch (IOException | InterruptedException e)
        {
            e.printStackTrace();
        }


    


  • How to send a camera capture frame to YouTube streaming using ffmpeg

    2 mars 2024, par 유혜진
    import subprocess 
import cv2

# YouTube streaming settings
YOUTUBE_URL = "rtmp://a.rtmp.youtube.com/live2/"
KEY = "..."

# OpenCV camera setup
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

# FFmpeg command for streaming
command = [r"C:\utility\ffmpeg\ffmpeg-2024-02-22-git-76b2bb96b4-full_build\ffmpeg-2024-02-22-git-76b2bb96b4-full_build\bin\ffmpeg.exe",
            '-f', 'rawvideo',
            '-pix_fmt', 'bgr24',
            '-s', '640x480',
            '-i', '-',
            '-ar', '44100',
            '-ac', '2',
            '-acodec', 'pcm_s16le',
            '-f', 's16le',
            '-ac', '2',
            '-i', 'NUL',   
            '-acodec', 'aac',
            '-ab', '128k',
            '-strict', 'experimental',
            '-vcodec', 'h264',
            '-pix_fmt', 'yuv420p',
            '-g', '50',
            '-vb', '1000k',
            '-profile:v', 'baseline',
            '-preset', 'ultrafast',
            '-r', '30',
            '-f', 'flv', 
            f"{YOUTUBE_URL}/{KEY}",]

# Open a subprocess with FFmpeg
pipe = subprocess.Popen(command, stdin=subprocess.PIPE)

while True:
    # Read a frame from the camera
    ret, frame = cap.read()
    if not ret:
        break

    # Display the frame
    cv2.imshow('Frame', frame)
    cv2.waitKey(1)  # Wait for 1ms

    # Send the frame through the pipe for streaming
    pipe.stdin.write(frame.tobytes())

    # Check for 'q' key press to stop streaming
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release resources
cap.release()
cv2.destroyAllWindows()


    


    I'm trying to implement capturing the camera screen using opencv and transmitting this frame to the YouTube streaming broadcast via ffmpeg. YouTube streaming does start when I run this code. However, it appears to be a black screen, not a camera screen. I don't see what the problem is.

    


    I didn't even start streaming at first, but I changed the command option to various things, and when I ran the code, I succeeded in starting streaming. There are many references to transmitting mp4, but there are not many references to transmitting real-time capture. I'm going to process the camera screen using opencv and then send it to streaming. I don't know what the problem is. Please help me.

    


  • Introducing the Data Warehouse Connector feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new Data Warehouse Connector feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new Data Warehouse Connector feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the Data Warehouse Connector feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the Data Warehouse Connector feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘Data Warehouse Connector’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo.