Recherche avancée

Médias (91)

Autres articles (96)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

  • ANNEXE : Les plugins utilisés spécifiquement pour la ferme

    5 mars 2010, par

    Le site central/maître de la ferme a besoin d’utiliser plusieurs plugins supplémentaires vis à vis des canaux pour son bon fonctionnement. le plugin Gestion de la mutualisation ; le plugin inscription3 pour gérer les inscriptions et les demandes de création d’instance de mutualisation dès l’inscription des utilisateurs ; le plugin verifier qui fournit une API de vérification des champs (utilisé par inscription3) ; le plugin champs extras v2 nécessité par inscription3 (...)

Sur d’autres sites (8350)

  • Adding A New System To The Game Music Website

    1er août 2012, par Multimedia Mike — General

    At first, I was planning to just make a little website where users could install a Chrome browser extension and play music from old 8-bit NES games. But, like many software projects, the goal sort of ballooned. I created a website where users can easily play old video game music. It doesn’t cover too many systems yet, but I have had individual requests to add just about every system you can think of.

    The craziest part is that I know it’s possible to represent most of the systems. Eventually, it would be great to reach Chipamp parity (a combination plugin for Winamp that packages together plugins for many of these chiptunes). But there is a process to all of this. I have taken to defining a number of phases that are required to get a new system covered.

    Phase 0 informally involves marveling at the obscurity of some of the console systems for which chiptune collections have evolved. WonderSwan ? Sharp X68000 ? PC-88 ? I may be viewing this through a terribly Ameri-centric lens. I’ve at least heard of the ZX Spectrum and the Amstrad CPC even if I’ve never seen either.

    No matter. The goal is to get all their chiptunes cataloged and playable.

    Phase 1 : Finding A Player
    The first step is to find a bit of open source code that can play a particular format. If it’s a library that can handle many formats, like Game Music Emu or Audio Overload SDK, even better (probably). The specific open source license isn’t a big concern for me. I’m almost certain that some of the libraries that SaltyGME currently mixes are somehow incompatible, license-wise. I’ll worry about it when I encounter someone who A) cares, and B) is in a position to do something about it. Historical preservation comes first, and these software libraries aren’t getting any younger (I’m finding some that haven’t been touched in a decade).

    Phase 2 : Test Program
    The next phase is to create a basic test bench program that sends a music file into the library, generates a buffer of audio, and shoves it out to the speakers via PulseAudio’s simple API (people like to rip on PulseAudio, but its simple API really lives up to its name and requires pages less boilerplate code to play a few samples than ALSA).

    Phase 3 : Plug Into Web Player
    After successfully creating the test bench and understanding exactly which source files need to be built, the next phase is to hook it up to the main SaltyGME program via the ad-hoc plugin API I developed. This API requires that a player backend can, at the very least, initialize itself based on a buffer of bytes and generate audio samples into an array of 16-bit numbers. The API also provides functions for managing files with multiple tracks and toggling individual voices/channels if the library supports such a feature. Having the test bench application written beforehand usually smooths out this step.

    But really, I’m just getting started.

    Phase 4 : Collecting A Song Corpus
    Then there is the matter of staging a collection of songs for a given system. It seems like it would just be a matter of finding a large collection of songs for a given format, downloading them in bulk, and mirroring them. Honestly, that’s the easy part. People who are interested in this stuff have been lovingly curating massive collections of these songs for years (see SNESmusic.org for one of the best examples, and they also host a torrent of all their music for really quick and easy hoarding).

    In my drive to make this game music website more useful for normal people, the goal is to extract as much metadata as possible to make searching better, and to package the data so that it’s as convenient as possible for users. Whenever I seek to add a new format to the collection, this is the phase where I invariably find that I have to fundamentally modify some of the assumptions I originally made in the player.

    First, there were the NES Sound Format (NSF) files, the original format I wanted to play. These are files that have any number of songs packed into a single file. Playback libraries expose APIs to jump to individual tracks. So the player was designed around that. Game Boy GBS files also fall into this category but present a different challenge vis-à-vis metadata, addressed in the next phase.

    Then, there were the SPC files. Each SPC file is its own song and multiple SPC files are commonly bundled as RAR files. Not wanting to deal with RAR, or any format where I interacted with a general compression API to pull a few files out, I created a custom resource format (inspired by so many I have studied and documented) and compressed it with a simpler compression API. I also had to modify some of the player’s assumptions to deal with this archive format. Genesis VGMs, bundled either in .zip or .7z, followed the same model as SPC in RAR.

    Then it was suggested that I attempt to bring SaltyGME closer to feature parity with Chipamp, rather than just being a Chrome browser frontend for Game Music Emu. When I studied the Portable Sound Format (PSF), I realized it didn’t fit into the player model I already had. PSF uses a sort of shared library model for code execution and I developed another resource archive format to cope with it. So that covers quite a few formats.

    One more architecture challenge arose when I started to study one of the prevailing metadata formats, explained in the next phase.

    Phase 5 : Metadata
    Finally, for the collections to really be useful, I need to harvest that juicy metadata for search and presentation.

    I have created a series of programs and scripts to scrape metadata out of these music files and store it all in a database that drives the website and search engine. I recognize that it’s no good to have a large corpus of songs with minimal metadata and while importing bulk quantities of music, the scripts harshly reject songs that have too little metadata.

    Again, challenges abound. One of the biggest challenges I’m facing is the peculiar quasi-freeform metadata format that emerged as .m3u that takes a form similar to :

    #################################################################
    #
    # GRADIUS2
    # (c) KONAMI  by Furukawa Motoaki, IKACHAN
    #
    #################################################################
    

    nemesis2.kss::KSS,62,[Nemesis2] (Opening),2:23,,0
    nemesis2.kss::KSS,61,[Nemesis2] (Start),7,,0
    nemesis2.kss::KSS,43,[Nemesis2] (Air Battle),34,0-
    nemesis2.kss::KSS,44,[Nemesis2] (1st. BGM),51,0-
    [...]

    A lot of file formats (including Game Boy GBS mentioned earlier) store their metadata separately using this format. I have some ideas about tools I can use to help me process this data but I’m pretty sure each one will require some manual intervention.

    As alluded to in phase 4, .m3u presents another architectural challenge : Notice the second field in the CSV .m3u data. That’s a track number. A player can’t expect every track in a bundled chiptune file to be valid, nor to be in any particular order. Thus, I needed to alter the architecture once more to take this into account. However, instead of modifying the SaltyGME player, I simply extended the metadata database to include a playback order which, by default, is the same as the track order but can also accommodate this new issue. This also has the bonus of providing a facility to exclude playback of certain tracks. This comes in handy for many PSF archives which tend to include files that only provide support for other files and aren’t meant to be played on their own.

    Bright Side
    The reward for all of this effort is that the data lands in a proper database in the end. None of it goes back into the chiptune files themselves. This makes further modification easier as all of the data that is indexed and presented on the site comes from the database. Somewhere down the road, I should probably create an API for accessing this metadata.

  • Linux Media Player Survey Circa 2001

    2 septembre 2010, par Multimedia Mike — General

    Here’s a document I scavenged from my archives. It was dated September 1, 2001 and I now publish it 9 years later. It serves as sort of a time capsule for the state of media player programs at the time. Looking back on this list, I can’t understand why I couldn’t find MPlayer while I was conducting this survey, especially since MPlayer is the project I eventually started to work for a few months after writing this piece.

    For a little context, I had been studying multimedia concepts and tech for a year and was itching to get my hands dirty with practical multimedia coding. But I wanted to tackle what I perceived as unsolved problems– like playback of proprietary codecs. I didn’t want to have to build a new media playback framework just to start working on my problems. So I surveyed the players available to see which ones I could plug into and use as a testbed for implementing new decoders.

    Regarding Real Player, I wrote : “We’re trying to move away from the proprietary, closed-source “solutions”. Heh. Was I really an insufferable open source idealist back in the day ?

    Anyway, here’s the text with some Where are they now ? commentary [in brackets] :


    Towards an All-Inclusive Media Playing Solution for Linux

    I don’t feel that the media playing solutions for Linux set their sights high enough, even though they do tend to be quite ambitious.

    I want to create a media player for Linux that can open a file, figure out what type of file it is (AVI, MOV, etc.), determine the compression algorithms used to encode the audio and video chunks inside (MPEG, Cinepak, Sorenson, etc.) and replay the file using the best audio, video, and CPU facilities available on the computer.

    Video and audio playback is a solved problem on Linux ; I don’t wish to solve that problem again. The problem that isn’t solved is reliance on proprietary multimedia solutions through some kind of WINE-like layer in order to decode compressed multimedia files.

    Survey of Linux solutions for decoding proprietary multimedia
    updated 2001-09-01

    AVI Player for XMMS
    This is based on Avifile. All the same advantages and limitations apply.
    [Top Google hit is a Freshmeat page that doesn’t indicate activity since 2001-2002.]

    Avifile
    This player does a great job at taking apart AVI and ASF files and then feeding the compressed chunks of multimedia data through to the binary Win32 decoders.

    The program is written in C++ and I’m not very good at interpreting that kind of code. But I’m learning all over again. Examining the object hierarchy, it appears that the designers had the foresight to include native support for decoders that are compiled into the program from source code. However, closer examination reveals that there is support for ONE source decoder and that’s the “decoder” for uncompressed data. Still, I tried to manipulate this routine to accept and decode data from other codecs but no dice. It’s really confounding. The program always crashes when I feed non-uncompressed data through the source decoder.
    [Lives at http://avifile.sourceforge.net/ ; not updated since 2006.]

    Real Player
    There’s not much to do with this since it is closed source and proprietary. Even though there is a plugin architecture, that’s not satisfactory. We’re trying to move away from the proprietary, closed-source “solutions”.
    [Still kickin’ with version 11.]

    XAnim
    This is a well-established Unix media player. To his credit, the author does as well as he can with the resources he has. In other words, he supports the non-proprietary video codecs well, and even has support for some proprietary video codecs through binary-only decoders.

    The source code is extremely difficult to work with as the author chose to use the X coding format which I’ve never seen used anywhere else except for X header files. The infrastructure for extending the program and supporting other codecs and file formats is there, I suppose, but I would have to wrap my head around the coding style. Maybe I can learn to work past that. The other thing that bothers me about this program is the decoding approach : It seems that each video decoder includes routines to decompress the multimedia data into every conceivable RGB and YUV output format. This seems backwards to me ; it seems better to have one decoder function that decodes the data into its native format it was compressed from (e.g., YV12 for MPEG data) and then pass that data to another layer of the program that’s in charge of presenting the data and possibly converting it if necessary. This layer would encompass highly-optimized software conversion routines including special CPU-specific instructions (e.g., MMX and SSE) and eliminate the need to place those routines in lots of other routines. But I’m getting ahead of myself.
    [This one was pretty much dead before I made this survey, the most recent update being in 1999. Still, we owe it much respect as the granddaddy of Unix multimedia playback programs.]

    Xine
    This seems like a promising program. It was originally designed to play MPEGs from DVDs. It can also play MPEG files on a hard drive and utilizes the Xv extensions for hardware YUV playback. It’s also supposed to play AVI files using the same technique as Avifile but I have never, ever gotten it to work. If an AVI file has both video and sound, the binary video decoder can’t decode any frames. If the AVI file has video and no sound, the program gets confused and crashes, as far as I can tell.

    Still, it’s promising, and I’ve been trying to work around these crashes. It doesn’t yet have the type of modularization I’d like to see. Right now, it tailored to suit MPEG playback and AVI playback is an afterthought. Still, it appears to have a generalized interface for dropping in new file demultiplexers.

    I tried to extend the program for supporting source decoders by rewriting w32codec.c from scratch. I’m not having a smooth time of it so far. I’m able to perform some manipulations on the output window. However, I can’t get the program to deal with an RGB image format. It has trouble allocating an RGB surface with XvShmCreateImage(). This isn’t suprising, per my limited knowledge of X which is that Xv applies to YUV images, but it could also apply to RGB images as well. Anyway, the program should be able to fall back on regular RGB pixmaps if that Xv call fails.

    Right now, this program is looking the most promising. It will take some work to extend the underlying infrastructure, but it seems doable since I know C quite well and can understand the flow of this program, as opposed to Avifile and its C++. The C code also compiles about 10 times faster.
    [My home project for many years after a brief flirtation with MPlayer. It is still alive ; its latest release was just a month ago.]

    XMovie
    This library is a Quicktime movie player. I haven’t looked at it too extensively yet, but I do remember looking at it at one point and reading the documentation that said it doesn’t support key frames. Still, I should examine it again since they released a new version recently.
    [Heroine Virtual still puts out some software but XMovie has not been updated since 2005.]

    XMPS
    This program compiles for me, but doesn’t do much else. It can play an MP3 file. I have been able to get MPEG movies to play through it, but it refuses to show the full video frame, constricting it to a small window (obviously a bug).
    [This project is hosted on SourceForge and is listed with a registration date of 2003, well after this survey was made. So the project obviously lived elsewhere in 2001. Meanwhile, it doesn’t look like any files ever made it to SF for hosting.]

    XTheater
    I can’t even get this program to compile. It’s supposed to be an MPEG player based on SMPEG. As such, it probably doesn’t hold much promise for being easily extended into a general media player.
    [Last updated in 2002.]

    GMerlin
    I can’t get this to compile yet. I have a bug report in to the dev group.
    [Updated consistently in the last 9 years. Last update was in February of this year. I can’t find any record of my bug report, though.]

  • 5 Key Benefits of Using a Tag Manager

    12 décembre 2021, par erin — Analytics Tips, Marketing

    Websites today have become very complex to manage, and as you continue to look for ways to optimise your website, you’ll want to consider using a Tag Manager

    A Tag Manager will help your marketing team seamlessly track how your visitors are engaging with your website’s elements. Without a Tag Manager, you are missing out on business-altering insights.

    In this blog, we’ll cover :

    Tag Manager overview 

    A Tag Manager (AKA Tag Management System or TMS) is a centralised system for implementing, managing and tracking events. A tag is just another word for a piece of code on a website that tracks a specific event. 

    An example of a tag tracking code might be Facebook pixels, ad conversions and other website activities such as signing up to a newsletter or PDF download. 

    Triggers are the actual actions that website visitors take that activate the tag. Examples of triggers are things like : 

    • A thank you page view to show that a visitor has completed a conversion action
    • Clicking a download or sign up button 
    • Scroll depth or how far down users are scrolling on your webpage 

    Each of these will give you insights into how your website is performing and how your users are engaging with your content. Going back to the scroll depth trigger example, this would be particularly helpful for validating bounce rate and finding out where users are dropping off on a page. Discover other ways to take advantage of tags and event tracking

    Tag Manager

    5 key benefits of a Tag Manager

    1. Removes the risks of website downtime 

    Tags are powerful for in-depth web analytics. However, tagging opens up the potential for non-technical team members to break the front-end of your website in a couple of clicks. 

    A Tag Manager reduces that risk. For example, Matomo Tag Manager lets you preview tags to see if they are firing before pushing them live. You can also give specific users restricted access so you can approve any tagging before it goes live. 

    Tag Managers protect the functionality of your website and ensure that there is no downtime.

    2. Your website will load faster 

    When it comes to the success of your website, page speed is one of the most important factors. 

    Each time you add a tag to your site, you run the risk of slowing down the page speed. This can quickly build up to a poor performing site and frustrate your visitors.

    You can’t track tags if visitors won’t even stay long enough for your site to load. In fact, 1 in 4 visitors would abandon a website that takes more than 4 seconds to load. According to Deloitte, just a 0.1 second difference in loading speed can affect every step of your customer journey. 

    A Tag Manager, on the other hand, is a lightweight option only requiring one single tag. Using a Tag Manager to track events can make all the difference to your website’s performance and user experience.

    3. Greater efficiency for marketing

    Time is critical in marketing. The longer it takes for a campaign to launch, the greater the chances are that you’re missing out on sales opportunities.

    Waiting for the IT team to tag a thank you page before setting an ad live is inefficient and impacts your bottom line.

    Equipping marketing with a Tag Manager means that they’ll be able to launch campaigns faster and more effectively.

    Check out our Marketer’s Guide to Successful Website Event Tracking for more.

    4. Control all of your tracking and marketing tags in one place 

    Keeping track of what tags are on your site and where they’re located is a complicated task if you aren’t using a Tag Manager. Unmanaged tags can quickly pile up and result in errors with your analytics, like counting conversions twice. 

    Using a Tag Manager to centralise your tags in one easy to manage place reduces the chances of human errors. Instead, your team will be able to quickly see what tags are already in place so they aren’t doubling up on tracking.

    5. Reduce work for the IT team 

    Let’s face it, the IT team has more critical tasks at hand than adding tags to the website. Freeing up your IT team to focus on higher priority tasks should always be a goal.

    Tagging, while crucial for marketing, has the potential to create a lot of extra work for your website developers. Inserting code for each individual tag is time-consuming and means you aren’t collecting data in the meantime.

    Rather than overloading your IT team, empower your marketing team with the ability to add tags with a few clicks. 

    How to choose a Tag Management System

    There are many tools to choose from and the default option tends to be Google Tag Manager (GTM). But before you implement GTM or any other Tag Management Solution, we highly recommend asking these questions :

    1. What are my goals for a Tag Manager ? Before purchasing a Tag Manager, or any tool for that matter, understanding your goals upfront is best practice.
    2. Does the solution offer Tag Manager training resources ? If online Tag Manager training and educational resources are available for the tool, then you’ll be able to hit the ground running and start to see an ROI instantly.
    3. Can I get online support ? In case you need any help with the tool, having access to online support is a big bonus. 
    4. Is it compliant with privacy regulations ? If your business is already compliant, in the process of becoming compliant or future-proofing your tech stack for looming privacy regulations, then researching this is crucial. 
    5. How much does it cost ? If it’s “free”, find out how and why. In most cases, free solutions are just vehicles for collecting data to advertise to your users. 
    6. What do others think about the Tag Manager ? Check out reviews on sites like Capterra or G2 to find out how other businesses rate the tool. 

    Google Tag Manager alternative

    As privacy becomes a greater concern globally for end-users and governments, many businesses are looking for alternatives to the world’s largest advertising company – Google.

    Matomo Tag Manager is more than a Google Tag Manager alternative. With Matomo Tag Manager, you get a GDPR, HIPAA, CCPA and PECR compliant, open source Tag Manager and your data is 100% yours to own.

    Plus, with Matomo Tag Manager you only need one single tracking code for all of your website and tag analytics. No matter what you are tracking (scrolls, clicks, downloads, Heatmaps, visits, etc.), you will only ever need one piece of code on your website and one tool to manage it all. 

    The takeaway 

    Tagging is powerful but can quickly become complicated, risky and time-consuming. Tag Managers reduce these obstacles allowing you to set tags and triggers effortlessly. It empowers marketing teams, streamlines processes and removes the reliance on IT.

    Ready to try Matomo Tag Manager ? Start your 21-day free trial now – no credit card required.