
Recherche avancée
Médias (1)
-
Bug de détection d’ogg
22 mars 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Video
Autres articles (71)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...) -
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)
Sur d’autres sites (15026)
-
Is it possible to create 1 image + 1 audio file = 1 video WITHOUT using ffmpeg ?
8 août 2015, par user997841Is it possible to create a "1 image + 1 audio file = 1 video" WITHOUT using ffmpeg ? My hosting doesn’t allow it, so I’m searching for an alternative.
I would like to be able to write it in php if that is possible.
If anyone can lead me in the right direction that would be awesome !
Switching to a dedicated server is not an option at the moment :)This is the code that I tried (I’m pretty new at this stuff so please be gentle :))
$command = 'ffmpeg -loop 1 -shortest -y -i image.jpg -i audio.wav -acodec copy -vcodec mjpeg result.avi';
exec($command); -
FFMPEG ignores "-shortest"
20 février 2024, par KapitanoI'm using FFMPEG to overlay one video on another. It works, but the "-shortest" instruction is ignored.


This is the code :


ffmpeg -i "D:\Underlay.avi" -i "D:\Overlay.avi" -filter_complex \
[1:v]colorkey=0xFFFFFF:0.01:0.0[KeyedOverlay];\
[0:v][KeyedOverlay]overlay[Composite] \
-map [Composite] -c:v png -shortest "D:\Composite.avi"



Am I doing anything wrong ? Is there an alternative method ?


-
Efficient real-time video stream processing and forwarding with RTMP servers
19 mai 2023, par dumbQuestionsI have a scenario where I need to retrieve a video stream from an RTMP server, apply image processing (specifically, adding blur to frames), and then forward the processed stream to another RTMP server (in this case, Twitch).


Currently, I'm using ffmpeg in conjunction with cv2 to retrieve and process the stream. However, this approach introduces significant lag when applying the blur. I'm seeking an alternative method that can achieve the desired result more efficiently. I did attempt to solely rely on ffmpeg for the entire process, but I couldn't find a way to selectively process frames based on a given condition and subsequently transmit only those processed frames.


Is there a more efficient approach or alternative solution that can address this issue and enable real-time video stream processing with minimal lag ?


Thanks in advance !


def forward_stream(server_url, stream_key, twitch_stream_key):
 get_ffmpeg_command = [...]

 send_ffmpeg_command [...]

 # Start get FFmpeg process
 read_process = subprocess.Popen(get_ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

 # Start send FFmpeg process
 send_process = send_process = subprocess.Popen(send_ffmpeg_command, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL)

 # Open video capture
 cap = cv2.VideoCapture(f'{server_url}')

 while True:
 # Read the frame
 ret, frame = cap.read()
 if ret:
 # Apply machine learning algorithm
 should_blur = machine_learning_algorithm(frame)

 # Apply blur if necessary
 if machine_learning_algorithm(frame):
 frame = cv2.blur(frame, (25, 25))

 # Write the frame to FFmpeg process
 send_process.stdin.write(frame.tobytes())
 else:
 break

 # Release resources
 cap.release()
 read_process.stdin.close()
 read_process.wait()