Recherche avancée

Médias (0)

Mot : - Tags -/api

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (56)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • MediaSPIP Core : La Configuration

    9 novembre 2010, par

    MediaSPIP Core fournit par défaut trois pages différentes de configuration (ces pages utilisent le plugin de configuration CFG pour fonctionner) : une page spécifique à la configuration générale du squelettes ; une page spécifique à la configuration de la page d’accueil du site ; une page spécifique à la configuration des secteurs ;
    Il fournit également une page supplémentaire qui n’apparait que lorsque certains plugins sont activés permettant de contrôler l’affichage et les fonctionnalités spécifiques (...)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

Sur d’autres sites (9458)

  • FFmpeg C API WMAV2 AVCodecParserContext not found even though CLI can parse WMAs on MacOS

    3 octobre 2023, par grendell

    I am following the decode_audio.c example from FFmpeg, but I am unable to initialize a parser for AV_CODEC_ID_WMAV2.

    


    Test code :

    


    #include &#xA;#include <libavcodec></libavcodec>avcodec.h>&#xA;&#xA;int main() {&#xA;    // codec is found successfully&#xA;    const AVCodec * codec = avcodec_find_decoder(AV_CODEC_ID_WMAV2);&#xA;    if (!codec) {&#xA;        fprintf(stderr, "codec not found\n");&#xA;        return 1;&#xA;    }&#xA;&#xA;    // parser is always NULL&#xA;    AVCodecParserContext * parser = av_parser_init(codec->id);&#xA;    if (!parser) {&#xA;        fprintf(stderr, "parser not found\n");&#xA;        return 1;&#xA;    }&#xA;&#xA;    av_parser_close(parser);&#xA;    return 0;&#xA;}&#xA;

    &#xA;

    Build commands :

    &#xA;

    clang -c -I/opt/homebrew/Cellar/ffmpeg/6.0_1/include wma2mp3.c -o obj/wma2mp3.o&#xA;clang -L/opt/homebrew/Cellar/ffmpeg/6.0_1/lib -lavcodec obj/wma2mp3.o -o wma2mp3&#xA;

    &#xA;

    I'm surprised by the fact that the FFmpeg CLI can perform this operation on the same machine :

    &#xA;

    % ffmpeg -i test.wma test.mp3&#xA;ffmpeg version 6.0 Copyright (c) 2000-2023 the FFmpeg developers&#xA;  built with Apple clang version 14.0.3 (clang-1403.0.22.14.1)&#xA;  configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/6.0_1 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libjxl --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-audiotoolbox --enable-neon&#xA;  libavutil      58.  2.100 / 58.  2.100&#xA;  libavcodec     60.  3.100 / 60.  3.100&#xA;  libavformat    60.  3.100 / 60.  3.100&#xA;  libavdevice    60.  1.100 / 60.  1.100&#xA;  libavfilter     9.  3.100 /  9.  3.100&#xA;  libswscale      7.  1.100 /  7.  1.100&#xA;  libswresample   4. 10.100 /  4. 10.100&#xA;  libpostproc    57.  1.100 / 57.  1.100&#xA;Guessed Channel Layout for Input Stream #0.0 : mono&#xA;Input #0, asf, from &#x27;test.wma&#x27;:&#xA;  Metadata:&#xA;    ToolName        : Windows Media Encoding Utility&#xA;    ToolVersion     : 8.00.00.0343&#xA;  Duration: 00:00:00.74, start: 0.000000, bitrate: 80 kb/s&#xA;  Stream #0:0: Audio: wmav2 (a[1][0][0] / 0x0161), 44100 Hz, 1 channels, fltp, 48 kb/s&#xA;Stream mapping:&#xA;  Stream #0:0 -> #0:0 (wmav2 (native) -> mp3 (libmp3lame))&#xA;Press [q] to stop, [?] for help&#xA;Output #0, mp3, to &#x27;test.mp3&#x27;:&#xA;  Metadata:&#xA;    ToolName        : Windows Media Encoding Utility&#xA;    ToolVersion     : 8.00.00.0343&#xA;    TSSE            : Lavf60.3.100&#xA;  Stream #0:0: Audio: mp3, 44100 Hz, mono, fltp&#xA;    Metadata:&#xA;      encoder         : Lavc60.3.100 libmp3lame&#xA;[libmp3lame @ 0x130706320] Queue input is backward in timeed=N/A    &#xA;[mp3 @ 0x1307056e0] Application provided invalid, non monotonically increasing dts to muxer in stream 0: 15668 >= 14764&#xA;size=       8kB time=00:00:00.97 bitrate=  65.8kbits/s speed= 103x    &#xA;video:0kB audio:8kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 4.048112%&#xA;

    &#xA;

    I am using an Apple M1 machine running MacOS 13.5.2 (22G91).

    &#xA;

    Is the CLI using a different mechanism than av_parser_parse2 to perform this conversion, and is there a better way to accomplish this via the C API ?

    &#xA;

  • Stopping Referrer Spam

    13 mai 2015, par Piwik Core Team — Community

    In this blog post we explain what is Referrer spam, this new kind of spam that has recently appeared on the Internet. We also provide solutions to stop it and preserve the quality of your analytics data.

    What is Referrer Spam ?

    Referrer spam (also known as log spam or referrer bombing) is a kind of spamming aimed at web analytics tools. A spammer bot makes repeated web site requests using a fake referrer URL to the site the spammer wishes to advertise.

    Here is an example of referrer spam in action :

    An example of referrer spam

    Half of those referrers are spams, here are some well know spammers that you may have seen in your logs : buttons-for-you-website.com, best-seo-offer.com, semalt.com

    The benefit for spammers is that their website will appear in analytics tools like Piwik or Google Analytics :

    • public analytics reports (or logs) will be indexed by search engines : links to the spammer’s website will improve its ranking
    • curious webmasters are likely to visit their referrers, thus bringing traffic to the spammer’s website

    How to deal with Referrer Spam ?

    Referrer spam is still new and analytics tools are all handling it differently.

    Referrer Spam in Piwik

    At Piwik we started working on mitigating Referrer spam more than a year ago. If you use Piwik and keep it up to date, you do not need to do anything.

    Referrer spammers are automatically excluded from your reports to keep your data clean and useful.

    New spammers are continuously detected and added to Piwik’s blacklist on each update. If you find a new spammer in your analytics data, you can even report it so that it is added to the Piwik’s open referrer blacklist and blocked for everyone.

    Referrer Spam in Google Analytics

    Google Analytics doesn’t offer any spam protection by default. It can however be configured manually using a custom Filter.

    To create a filter in Google Analytics go to the Admin section and click on All Filters. Create a new custom filter that excludes based on the Campaign Source field. In the Filter pattern enter the spammers domains you want to exclude (this is a regular expression) :

    Configuring a referrer spam filter in Google Analytics

    If new spammers arise you will need to update this list. You can also use Piwik’s referrer blacklist to exclude all the spammers currently detected.

    Other Analytics Tools

    Many web analytics tools do not yet handle Referrer spam and when using these tools, you will often find a lot of spam data in your Referrer Websites analytics reports.

    If you use an analytics tool that does not exclude Referrer spam, we recommend to contact the vendor and ask them to implement a mechanism to remove these referrer spammers. As of today many analytics vendors still have not mitigated this issue.

    Public List of Referrer Spammers

    At Piwik with the help of our large community we have decided to tackle this growing spam issue. We have created a list of up to date referrer spammers that anyone can edit.

    The list is available in a simple text file on Github : github.com/piwik/referrer-spam-blacklist.

    The list is released under the Public Domain and anyone can use it within their applications to exclude referrer spammers.

    Many people have already contributed new spammers to the list. We invite you to use the list in your apps and websites and help us keep the list up to date !

    Let’s unite and fight the spammers together.

    Happy Analytics !

  • Stopping Referrer Spam

    13 mai 2015, par Piwik Core Team — Community

    In this blog post we explain what is Referrer spam, this new kind of spam that has recently appeared on the Internet. We also provide solutions to stop it and preserve the quality of your analytics data.

    What is Referrer Spam ?

    Referrer spam (also known as log spam or referrer bombing) is a kind of spamming aimed at web analytics tools. A spammer bot makes repeated web site requests using a fake referrer URL to the site the spammer wishes to advertise.

    Here is an example of referrer spam in action :

    An example of referrer spam

    Half of those referrers are spams, here are some well know spammers that you may have seen in your logs : buttons-for-you-website.com, best-seo-offer.com, semalt.com

    The benefit for spammers is that their website will appear in analytics tools like Piwik or Google Analytics :

    • public analytics reports (or logs) will be indexed by search engines : links to the spammer’s website will improve its ranking
    • curious webmasters are likely to visit their referrers, thus bringing traffic to the spammer’s website

    How to deal with Referrer Spam ?

    Referrer spam is still new and analytics tools are all handling it differently.

    Referrer Spam in Piwik

    At Piwik we started working on mitigating Referrer spam more than a year ago. If you use Piwik and keep it up to date, you do not need to do anything.

    Referrer spammers are automatically excluded from your reports to keep your data clean and useful.

    New spammers are continuously detected and added to Piwik’s blacklist on each update. If you find a new spammer in your analytics data, you can even report it so that it is added to the Piwik’s open referrer blacklist and blocked for everyone.

    Referrer Spam in Google Analytics

    Google Analytics doesn’t offer any spam protection by default. It can however be configured manually using a custom Filter.

    To create a filter in Google Analytics go to the Admin section and click on All Filters. Create a new custom filter that excludes based on the Campaign Source field. In the Filter pattern enter the spammers domains you want to exclude (this is a regular expression) :

    Configuring a referrer spam filter in Google Analytics

    If new spammers arise you will need to update this list. You can also use Piwik’s referrer blacklist to exclude all the spammers currently detected.

    Other Analytics Tools

    Many web analytics tools do not yet handle Referrer spam and when using these tools, you will often find a lot of spam data in your Referrer Websites analytics reports.

    If you use an analytics tool that does not exclude Referrer spam, we recommend to contact the vendor and ask them to implement a mechanism to remove these referrer spammers. As of today many analytics vendors still have not mitigated this issue.

    Public List of Referrer Spammers

    At Piwik with the help of our large community we have decided to tackle this growing spam issue. We have created a list of up to date referrer spammers that anyone can edit.

    The list is available in a simple text file on Github : github.com/piwik/referrer-spam-blacklist.

    The list is released under the Public Domain and anyone can use it within their applications to exclude referrer spammers.

    Many people have already contributed new spammers to the list. We invite you to use the list in your apps and websites and help us keep the list up to date !

    Let’s unite and fight the spammers together.

    Happy Analytics !