
Recherche avancée
Autres articles (71)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Le profil des utilisateurs
12 avril 2011, par kent1Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...) -
Configurer la prise en compte des langues
15 novembre 2010, par kent1Accéder à la configuration et ajouter des langues prises en compte
Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)
Sur d’autres sites (7065)
-
Google Analytics 4 (GA4) vs Universal Analytics (UA)
24 janvier 2022, par Erin — Analytics TipsMarch 2022 Update : It’s official ! Google announced that Universal Analytics will no longer process any new data as of 1 July 2023. Google is now pushing Universal Analytics users to switch to the latest version of GA – Google Analytics 4.
Currently, Google Analytics 4 is unable to accept historical data from Universal Analytics. Users need to take action before July 2022, to ensure they have 12 months of data built up before the sunset of Universal Analytics
So how do Universal Analytics and Google Analytics 4 compare ? And what alternative options do you have ? Let’s dive in.
In this blog, we’ll cover :
What is Google Analytics 4 ?
In October 2020, Google launched Google Analytics 4, a completely redesigned analytics platform. This follows on from the previous version known as Universal Analytics (or UA).
Amongst its touted benefits, GA4 promises a completely new way to model data and even the ability to predict future revenue.
However, the reception of GA4 has been largely negative. In fact, some users from the digital marketing community have said that GA4 is awful, unusable and so bad it can bring you to tears.
Gill Andrews via Twitter Google Analytics 4 vs Universal Analytics
There are some pretty big differences between Google Analytics 4 and Universal Analytics but for this blog, we’ll cover the top three.
1. Redesigned user interface (UI)
GA4 features a completely redesigned UI to Universal Analytics’ popular interface. This dramatic change has left many users in confusion and fuelled some users to declare that “most of the time you are going round in circles to find what you’re looking for.”
Mike Huggard via Twitter 2. Event-based tracking
Google Analytics 4 also brings with it a new data model which is purely event-based. This event-based model moves away from the typical “pageview” metric that underpins Universal Analytics.
3. Machine learning insights
Google Analytics 4 promises to “predict the future behavior of your users” with their machine-learning-powered predictive metrics. This feature can “use shared aggregated and anonymous data to improve model quality”. Sounds powerful, right ?
Unfortunately, it only works if at least 1,000 returning users triggered the relevant predictive condition over a seven-day period. Also, if the model isn’t sustained over a “period of time” then it won’t work. And according to Google, if “the model quality for your property falls below the minimum threshold, then Analytics will stop updating the corresponding predictions”.
This means GA4’s machine learning insights probably won’t work for the majority of analytics users.
Ultimately, GA4 is just not ready to replace Google’s Universal Analytics for most users. There are too many missing features.
What’s missing in Google Analytics 4 ?
Quite a lot. Even though it offers a completely new approach to analytics, there are a lot of key features and functions missing in GA4.
Behavior Flow
The Behavior Flow report in Universal Analytics helps to visualise the path users take from one page or Event to the next. It’s extremely useful when you’re looking for quick and clear insight. But it no longer exists in Google Analytics 4, and instead, two new overcomplicated reports have been introduced to replace it – funnel exploration report and path exploration report.
The decision to remove this critical report will leave many users feeling disappointed and frustrated.
Limitations on custom dimensions
You can create custom dimensions in Google Analytics 4 to capture advanced information. For example, if a user reads a blog post you can supplement that data with custom dimensions like author name or blog post length. But, you can only use up to 50, and for some that will make functionality like this almost pointless.
Machine learning (ML) limitations
Google Analytics 4 promises powerful ML insights to predict the likelihood of users converting based on their behaviors. The problem ? You need 1,000 returning users in one week. For most small-medium businesses this just isn’t possible.
And if you do get this level of traffic in a week, there’s another hurdle. According to Google, if “the model quality for your property falls below the minimum threshold, then GA will stop updating the corresponding predictions.” To add insult to injury Google suggests that this might make all ML insights unavailable. But they can’t say for certain…
Views
One cornerstone of Universal Analytics is the ability to configure views. Views allow you to set certain analytics environments for testing or cleaning up data by filtering out internal traffic, for example.
Views are great for quickly and easily filtering data. Preset views that contain just the information you want to see are the ideal analytics setup for smaller businesses, casual users, and do-it-yourself marketing departments.
Via Reddit There are a few workarounds but they’re “messy [,] annoying and clunky,” says a disenfranchised Redditor.
Another helpful Reddit user stumbled upon an unhelpful statement from Google. Google says that they “do not offer [the views] feature in Google Analytics 4 but are planning similar functionality in the future.” There’s no specific date yet though.
Bounce rate
Those that rely on bounce rate to understand their site’s performance will be disappointed to find out that bounce rate is also not available in GA4. Instead, Google is pushing a new metric known as “Engagement Rate”. With this metric, Google now uses their own formula to establish if a visitor is engaged with a site.
Lack of integration
Currently, GA4 isn’t ready to integrate with many core digital marketing tools and doesn’t accept non-Google data imports. This makes it difficult for users to analyse ROI and ROAS for campaigns measured in other tools.
Content Grouping
Yet another key feature that Google has done away with is Content Grouping. However, as with some of the other missing features in GA4, there is a workaround, but it’s not simple for casual users to implement. In order to keep using Content Grouping, you’ll need to create event-scoped custom dimensions.
Annotations
A key feature of Universal Analytics is the ability to add custom Annotations in views. Annotations are useful for marking dates that site changes were made for analysis in the future. However, Google has removed the Annotations feature and offered no alternative or workaround.
Historical data imports are not available
The new approach to data modelling in GA4 adds new functionality that UA can’t match. However, it also means that you can’t import historical UA data into GA4.
Google’s suggestion for this one ? Keep running UA with GA4 and duplicate events for your GA4 property. Now you will have two different implementations running alongside each other and doing slightly different things. Which doesn’t sound like a particularly streamlined solution, and adds another level of complexity.
Should you switch to Google Analytics 4 ?
So the burning question is, should you switch from Universal Analytics to Google Analytics 4 ? It really depends on whether you have the available resources and if you believe this tool is still right for your organisation. At the time of writing, GA4 is not ready for day-to-day use in most organisations.
If you’re a casual user or someone looking for quick, clear insights then you will likely struggle with the switch to GA4. It appears that the new Google Analytics 4 has been designed for enterprise-scale businesses with large internal teams of analysts.
Micah Fisher-Kirshner via Twitter Unfortunately, for most casual users, business owners and do-it-yourself marketers there are complex workarounds and time-consuming implementations to handle. Ultimately, it’s up to you to decide if the effort to migrate and relearn GA is worth it.
Right now is the best time to draw the line and make a decision to either switch to GA4 or look for a better alternative to Google Analytics.
Google Analytics alternative
Matomo is one of the best Google Analytics alternatives offering an easy to use design with enhanced insights on our Cloud, On-Premise and on Matomo for WordPress solutions.
Mark Samber via Twitter Matomo is an open-source analytics solution that provides a comprehensive, user-friendly and compliance-focused alternative to both Google Analytics 4 and Universal Analytics.
The key benefits of using Matomo include :
- Easy to use – Matomo provides a simpler interface and understandable KPIs. See for yourself with our live demo.
- Compliance – Future-proof your tech stack for looming privacy regulations. Matomo covers all of your ePrivacy, GDPR, HIPAA, CCPA, and PECR data compliance requirements.
- Data privacy and ownership – Your analytics data is 100% yours to own, with no external parties looking in.
- Flexible, all-in-one solution – Get features like A/B Testing, Heatmaps, Session Recordings, SEO Web Vitals, Tag Manager, Media Analytics, Search Engine Keyword Performance, custom reports and much more.
- Integrations galore – Expand your Matomo capabilities by adding integrations from over 100 leading technologies.
Plus, unlike GA4, Matomo will accept your historical data from UA so you don’t have to start all over again. Check out our 7 step guide to migrating from Google Analytics to find out how.
Getting started with Matomo is easy. Check out our live demo and start your free 21-day trial. No credit card required.
In addition to the limitations and complexities of GA4, there are many other significant drawbacks to using Google Analytics.
Google’s data ethics are a growing concern of many and it is often discussed in the mainstream media. In addition, GA is not GDPR compliant by default and has resulted in 200k+ data protection cases against websites using GA.
What’s more, the data that Google Analytics actually provides its end-users is extrapolated from samples. GA’s data sampling model means that once you’ve collected a certain amount of data Google Analytics will make educated guesses rather than use up its server space collecting your actual data.
The reasons to switch from Google Analytics are rising each day.
Wrap up
The now required update to GA4 will add new layers of complexity, which will leave many casual web analytics users and marketers wondering if there’s a better way. Luckily there is. Get clear insights quickly and easily with Matomo – start your 21-day free trial now.
-
Google Optimize vs Matomo A/B Testing : Everything You Need to Know
17 mars 2023, par Erin — Analytics TipsGoogle Optimize is a popular A/B testing tool marketers use to validate the performance of different marketing assets, website design elements and promotional offers.
But by September 2023, Google will sunset both free and paid versions of the Optimize product.
If you’re searching for an equally robust, but GDPR compliant, privacy-friendly alternative to Google Optimize, have a look at Matomo A/B Testing.
Integrated with our analytics platform and conversion rate optimisation (CRO) tools, Matomo allows you to run A/B and A/B/n tests without any usage caps or compromises in user privacy.
Disclaimer : Please note that the information provided in this blog post is for general informational purposes only and is not intended to provide legal advice. Every situation is unique and requires a specific legal analysis. If you have any questions regarding the legal implications of any matter, please consult with your legal team or seek advice from a qualified legal professional.
Google Optimize vs Matomo : Key Capabilities Compared
This guide shows how Matomo A/B testing stacks against Google Optimize in terms of features, reporting, integrations and pricing.
Supported Platforms
Google Optimize supports experiments for dynamic websites and single-page mobile apps only.
If you want to run split tests in mobile apps, you’ll have to do so via Firebase — Google’s app development platform. It also has a free tier but paid usage-based subscription kicks in after your product(s) reaches a certain usage threshold.
Google Optimize also doesn’t support CRO experiments for web or desktop applications, email campaigns or paid ad campaigns.Matomo A/B Testing, in contrast, allows you to run experiments in virtually every channel. We have three installation options — using JavaScript, server-side technology, or our mobile tracking SDK. These allow you to run split tests in any type of web or mobile app (including games), a desktop product, or on your website. Also, you can do different email marketing tests (e.g., compare subject line variants).
A/B Testing
A/B testing (split testing) is the core feature of both products. Marketers use A/B testing to determine which creative elements such as website microcopy, button placements and banner versions, resonate better with target audiences.
You can benchmark different versions against one another to determine which variation resonates more with users. Or you can test an A version against B, C, D and beyond. This is called A/B/n testing.
Both Matomo A/B testing and Google Optimize let you test either separate page elements or two completely different landing page designs, using redirect tests. You can show different variants to different user groups (aka apply targeting criteria). For example, activate tests only for certain device types, locations or types of on-site behaviour.
The advantage of Matomo is that we don’t limit the number of concurrent experiments you can run. With Google Optimize, you’re limited to 5 simultaneous experiments. Likewise,
Matomo lets you select an unlimited number of experiment objectives, whereas Google caps the maximum choice to 3 predefined options per experiment.
Objectives are criteria the underlying statistical model will use to determine the best-performing version. Typically, marketers use metrics such as page views, session duration, bounce rate or generated revenue as conversion goals.
Multivariate testing (MVT)
Multivariate testing (MVT) allows you to “pack” several A/B tests into one active experiment. In other words : You create a stack of variants to determine which combination drives the best marketing outcomes.
For example, an MVT experiment can include five versions of a web page, where each has a different slogan, product image, call-to-action, etc. Visitors are then served with a different variation. The tracking code collects data on their behaviours and desired outcomes (objectives) and reports the results.
MVT saves marketers time as it’s a great alternative to doing separate A/B tests for each variable. Both Matomo and Google Optimize support this feature. However, Google Optimize caps the number of possible combinations at 16, whereas Matomo has no limits.
Redirect Tests
Redirect tests, also known as split URL tests, allow you to serve two entirely different web page versions to users and compare their performance. This option comes in handy when you’re redesigning your website or want to test a localised page version in a new market.
Also, redirect tests are a great way to validate the performance of bottom-of-the-funnel (BoFU) pages as a checkout page (for eCommerce websites), a pricing page (for SaaS apps) or a contact/booking form (for a B2B service businesses).
You can do split URL tests with Google Optimize and Matomo A/B Testing.
Experiment Design
Google Optimize provides a visual editor for making simple page changes to your website (e.g., changing button colour or adding several headline variations). You can then preview the changes before publishing an experiment. For more complex experiments (e.g., testing different page block sequences), you’ll have to codify experiments using custom JavaScript, HTML and CSS.
In Matomo, all A/B tests are configured on the server-side (i.e., by editing your website’s raw HTML) or client-side via JavaScript. Afterwards, you use the Matomo interface to start or schedule an experiment, set objectives and view reports.
Experiment Configuration
Marketers know how complex customer journeys can be. Multiple factors — from location and device to time of the day and discount size — can impact your conversion rates. That’s why a great CRO app allows you to configure multiple tracking conditions.
Matomo A/B testing comes with granular controls. First of all, you can decide which percentage of total web visitors participate in any given experiment. By default, the number is set to 100%, but you can change it to any other option.
Likewise, you can change which percentage of traffic each variant gets in an experiment. For example, your original version can get 30% of traffic, while options A and B receive 40% each. We also allow users to specify custom parameters for experiment participation. You can only show your variants to people in specific geo-location or returning visitors only.
Finally, you can select any type of meaningful objective to evaluate each variant’s performance. With Matomo, you can either use standard website analytics metrics (e.g., total page views, bounce rate, CTR, visit direction, etc) or custom goals (e.g., form click, asset download, eCommerce order, etc).
In other words : You’re in charge of deciding on your campaign targeting criteria, duration and evaluation objectives.
A free Google Optimize account comes with three main types of user targeting options :
- Geo-targeting at city, region, metro and country levels.
- Technology targeting by browser, OS or device type, first-party cookie, etc.
- Behavioural targeting based on metrics like “time since first arrival” and “page referrer” (referral traffic source).
Users can also configure other types of tracking scenarios (for example to only serve tests to signed-in users), using condition-based rules.
Reporting
Both Matomo and Google Optimize use different statistical models to evaluate which variation performs best.
Matomo relies on statistical hypothesis testing, which we use to count unique visitors and report on conversion rates. We analyse all user data (with no data sampling applied), meaning you get accurate reporting, based on first-hand data, rather than deductions. For that reason, we ask users to avoid drawing conclusions before their experiment participation numbers reach a statistically significant result. Typically, we recommend running an experiment for at least several business cycles to get a comprehensive report.
Google Optimize, in turn, uses Bayesian inference — a statistical method, which relies on a random sample of users to compare the performance rates of each creative against one another. While a Bayesian model generates CRO reports faster and at a bigger scale, it’s based on inferences.
Model developers need to have the necessary skills to translate subjective prior beliefs about the probability of a certain event into a mathematical formula. Since Google Optimize is a proprietary tool, you cannot audit the underlying model design and verify its accuracy. In other words, you trust that it was created with the right judgement.
In comparison, Matomo started as an open-source project, and our source code can be audited independently by anyone at any time.
Another reporting difference to mind is the reporting delays. Matomo Cloud generates A/B reports within 6 hours and in only 1 hour for Matomo On-Premise. Google Optimize, in turn, requires 12 hours from the first experiment setup to start reporting on results.
When you configure a test experiment and want to quickly verify that everything is set up correctly, this can be an inconvenience.
User Privacy & GDPR Compliance
Google Optimize works in conjunction with Google Analytics, which isn’t GDPR compliant.
For all website traffic from the EU, you’re therefore obliged to show a cookie consent banner. The kicker, however, is that you can only show an Optimize experiment after the user gives consent to tracking. If the user doesn’t, they will only see an original page version. Considering that almost 40% of global consumers reject cookie consent banners, this can significantly affect your results.
This renders Google Optimize mostly useless in the EU since it would only allow you to run tests with a fraction ( 60%) of EU traffic — and even less if you apply any extra targeting criteria.
In comparison, Matomo is fully GDPR compliant. Therefore, our users are legally exempt from displaying cookie-consent banners in most EU markets (with Germany and the UK being an exception). Since Matomo A/B testing is part of Matomo web analytics, you don’t have to worry about GDPR compliance or breaches in user privacy.
Digital Experience Intelligence
You can get comprehensive statistical data on variants’ performance with Google Optimize. But you don’t get further insights on why some tests are more successful than others.
Matomo enables you to collect more insights with two extra features :
- User session recordings : Monitor how users behave on different page versions. Observe clicks, mouse movements, scrolls, page changes, and form interactions to better understand the users’ cumulative digital experience.
- Heatmaps : Determine which elements attract the most users’ attention to fine-tune your split tests. With a standard CRO tool, you only assume that a certain page element does matter for most users. A heatmap can help you determine for sure.
Both of these features are bundled into your Matomo Cloud subscription.
Integrations
Both Matomo and Google Optimize integrate with multiple other tools.
Google Optimize has native integrations with other products in the marketing family — GA, Google Ads, Google Tag Manager, Google BigQuery, Accelerated Mobile Pages (AMP), and Firebase. Separately, other popular marketing apps have created custom connectors for integrating Google Optimize data.
Matomo A/B Testing, in turn, can be combined with other web analytics and CRO features such as Funnels, Multi-Channel Attribution, Tag Manager, Form Analytics, Heatmaps, Session Recording, and more !
You can also conveniently export your website analytics or CRO data using Matomo Analytics API to analyse it in another app.
Pricing
Google Optimize is a free tool but has usage caps. If you want to schedule more than 5 concurrent experiments or test more than 16 variants at once, you’ll have to upgrade to Optimize 360. Optimize 360 prices aren’t listed publicly but are said to be closer to six figures per year.
Matomo A/B Testing is available with every Cloud subscription (starting from €19) and Matomo On-Premise users can also get A/B Testing as a plugin (starting from €199/year). In each case, there are no caps or data limits.
Google Optimize vs Matomo A/B Testing : Comparison Table
Features/capabilities Google Optimize Matomo A/B test Supported channels Web Web, mobile, email, digital campaigns A/B testing Multivariate testing (MVT) Split URL tests Web analytics integration Native with UA/GA4 Native with Matomo
You can also migrate historical UA (GA3) data to MatomoAudience segmentation Basic Advanced Geo-targeting Technology targeting Behavioural targeting Basic Advanced Reporting model Bayesian analysis Statistical hypothesis testing Report availability Within 12 hours after setup 6 hours for Matomo Cloud
1 hour for Matomo On-PremiseHeatmaps
Included with Matomo CloudSession recordings
Included with Matomo CloudGDPR compliance Support Self-help desk on a free tier Self-help guides, user forum, email Price Free limited tier From €19 for Cloud subscription
From €199/year as plugin for On-PremiseFinal Thoughts : Who Benefits the Most From an A/B Testing Tool ?
Split testing is an excellent method for validating various assumptions about your target customers.
With A/B testing tools you get a data-backed answer to research hypotheses such as “How different pricing affects purchases ?”, “What contact button placement generates more clicks ?”, “Which registration form performs best with new app subscribers ?” and more.
Such insights can be game-changing when you’re trying to improve your demand-generation efforts or conversion rates at the BoFu stage. But to get meaningful results from CRO tests, you need to select measurable, representative objectives.
For example, split testing different pricing strategies for low-priced, frequently purchased products makes sense as you can run an experiment for a couple of weeks to get a statistically relevant sample.
But if you’re in a B2B SaaS product, where the average sales cycle takes weeks (or months) to finalise and things like “time-sensitive discounts” or “one-time promos” don’t really work, getting adequate CRO data will be harder.
To see tangible results from CRO, you’ll need to spend more time on test ideation than implementation. Your team needs to figure out : which elements to test, in what order, and why.
Effective CRO tests are designed for a specific part of the funnel and assume that you’re capable of effectively identifying and tracking conversions (goals) at the selected stage. This alone can be a complex task since not all customer journeys are alike. For SaaS websites, using a goal like “free trial account registration” can be a good starting point.
A good test also produces a meaningful difference between the proposed variant and the original version. As Nima Yassini, Partner at Deloitte Digital, rightfully argues :
“I see people experimenting with the goal of creating an uplift. There’s nothing wrong with that, but if you’re only looking to get wins you will be crushed when the first few tests fail. The industry average says that only one in five to seven tests win, so you need to be prepared to lose most of the time”.
In many cases, CRO tests don’t provide the data you expected (e.g., people equally click the blue and green buttons). In this case, you need to start building your hypothesis from scratch.
At the same time, it’s easy to get caught up in optimising for “vanity metrics” — such that look good in the report, but don’t quite match your marketing objectives. For example, better email headline variations can improve your email open rates. But if users don’t proceed to engage with the email content (e.g. click-through to your website or use a provided discount code), your efforts are still falling short.
That’s why developing a baseline strategy is important before committing to an A/B testing tool. Google Optimize appealed to many users because it’s free and allows you to test your split test strategy cost-effectively.
With its upcoming depreciation, many marketers are very committed to a more expensive A/B tool (especially when they’re not fully sure about their CRO strategy and its results).
Matomo A/B testing is a cost-effective, GDPR-compliant alternative to Google Optimize with a low learning curve and extra competitive features.
Discover if Matomo A/B Testing is the ideal Google Optimize alternative for your organization with our free 21-day trial. No credit card required.
-
10 Key Google Analytics Limitations You Should Be Aware Of
9 mai 2022, par ErinGoogle Analytics (GA) is the biggest player in the web analytics space. But is it as “universal” as its brand name suggests ?
Over the years users have pointed out a number of major Google Analytics limitations. Many of these are even more visible in Google Analytics 4.
Introduced in 2020, Google Analytics 4 (GA4) has been sceptically received. As the sunset date of 1st, July 2023 for the current version, Google Universal Analytics (UA), approaches, the dismay grows stronger.
To the point where people are pleading with others to intervene :
Source : Chris Tweten via Twitter Main limitations of Google Analytics
Google Analytics 4 is advertised as a more privacy-centred, comprehensive and “intelligent” web analytics platform.
According to Google, the newest version touts :
- Machine learning at its core provides better segmentation and fast-track access to granular insights
- Privacy-by-design controls, addressing restrictions on cookies and new regulatory demands
- More complete understanding of customer journeys across channels and devices
Some of these claims hold true. Others crumble upon a deeper investigation. Newly advertised Google Analytics capabilities such as ‘custom events’, ‘predictive insights’ and ‘privacy consent mode’ only have marginal improvements.
Complex setup, poor UI and lack of support with migration also leave many other users frustrated with GA4.
Source : Alexander Stoffel via Twitter Let’s unpack all the current (and legacy) limitations of Google Analytics you should account for.
1. No Historical Data Imports
Google rushed users to migrate from Universal Analytics to Google Analytics 4. But they overlooked one important precondition — backwards compatibility.
You have no way to import data from Google Universal Analytics to Google Analytics 4.
Historical records are essential for analysing growth trends and creating benchmarks for new marketing campaigns. Effectively, you are cut short from past insights — and forced to start strategising from scratch.
At present, Google offers two feeble solutions :
- Run data collection in parallel and have separate reporting for GA4 and UA until the latter is shut down. Then your UA records are gone.
- For Ecommerce data, manually duplicate events from UA at a new GA4 property while trying to figure out the new event names and parameters.
Google’s new data collection model is the reason for migration difficulties.
In Google Analytics 4, all analytics hits types — page hits, social hits, app/screen view, etc. — are recorded as events. Respectively, the “‘event’ parameter in GA4 is different from one in Google Universal Analytics as the company explains :
Source : Google This change makes migration tedious — and Google offers little assistance with proper events and custom dimensions set up.
2. Data Collection Limits
If you’ve wrapped your head around new GA4 events, congrats ! You did a great job, but the hassle isn’t over.
You still need to pay attention to new Google Analytics limits on data collection for event parameters and user properties.
Source : Google These apply to :
- Automatically collected events
- Enhanced measurement events
- Recommended events
- Custom events
When it comes to custom events, GA4 also has a limit of 25 custom parameters per event. Even though it seems a lot, it may not be enough for bigger websites.
You can get higher limits by upgrading to Google Analytics 360, but the costs are steep.
3. Limited GDPR Compliance
Google Analytics has a complex history with European GDPR compliance.
A 2020 ruling by the Court of Justice of the European Union (CJEU) invalidated the Privacy Shield framework Google leaned upon. This framework allowed the company to regulate EU-US data transfers of sensitive user data.
But after this loophole was closed, Google faced a heavy series of privacy-related fines :
- French data protection authority, CNIL, ruled that “the transfers to the US of personal data collected through Google Analytics are illegal” — and proceeded to fine Google for a record-setting €150 million at the beginning of 2022.
- Austrian regulators also deemed Google in breach of GDPR requirements and also branded the analytics as illegal.
Other EU-member states might soon proceed with similar rulings. These, in turn, can directly affect Google Analytics users, whose businesses could face brand damage and regulatory fines for non-compliance. In fact, companies cannot select where the collected analytics data will be stored — on European servers or abroad — nor can they obtain this information from Google.
Getting a web analytics platform that allows you to keep data on your own servers or select specific Cloud locations is a great alternative.
Google also has been lax with its cookie consent policy and doesn’t properly inform consumers about data collection, storage or subsequent usage. Google Analytics 4 addresses this issue to an extent.
By default, GA4 relies on first-party cookies, instead of third-party ones — which is a step forward. But the user privacy controls are hard to configure without losing most of the GA4 functionality. Implementing user consent mode to different types of data collection also requires a heavy setup.
4. Strong Reliance on Sampled Data
To compensate for ditching third-party cookies, GA4 more heavily leans on sampled data and machine learning to fill the gaps in reporting.
In GA4 sampling automatically applies when you :
- Perform advanced analysis such as cohort analysis, exploration, segment overlap or funnel analysis with not enough data
- Have over 10,000,000 data rows and generate any type of non-default report
Google also notes that data sampling can occur at lower thresholds when you are trying to get granular insights. If there’s not enough data or because Google thinks it’s too complex to retrieve.
In their words :
Source : Google Data sampling adds “guesswork” to your reports, meaning you can’t be 100% sure of data accuracy. The divergence from actual data depends on the size and quality of sampled data. Again, this isn’t something you can control.
Unlike Google Analytics 4, Matomo applies no data sampling. Your reports are always accurate and fully representative of actual user behaviours.
5. No Proper Data Anonymization
Data anonymization allows you to collect basic analytics about users — visits, clicks, page views — but without personally identifiable information (or PII) such as geo-location, assigns tracking ID or other cookie-based data.
This reduced your ability to :
- Remarket
- Identify repeating visitors
- Do advanced conversion attribution
But you still get basic data from users who ignored or declined consent to data collection.
By default, Google Analytics 4 anonymizes all user IP addresses — an upgrade from UA. However, it still assigned a unique user ID to each user. These count as personal data under GDPR.
For comparison, Matomo provides more advanced privacy controls. You can anonymize :
- Previously tracked raw data
- Visitor IP addresses
- Geo-location information
- User IDs
This can ensure compliance, especially if you operate in a sensitive industry — and delight privacy-mindful users !
6. No Roll-Up Reporting
Getting a bird’s-eye view of all your data is helpful when you need hotkey access to main sites — global traffic volume, user count or percentage of returning visitors.
With Roll-Up Reporting, you can see global-performance metrics for multiple localised properties (.co.nz, .co.uk, .com, etc,) in one screen. Then zoom in on specific localised sites when you need to.
7. Report Processing Latency
The average data processing latency is 24-48 hours with Google Analytics.
Accounts with over 200,000 daily sessions get data refreshes only once a day. So you won’t be seeing the latest data on core metrics. This can be a bummer during one-day promo events like Black Friday or Cyber Monday when real-time information can prove to be game-changing !
Matomo processes data with lower latency even for high-traffic websites. Currently, we have 6-24 hour latency for cloud deployments. On-premises web analytics can be refreshed even faster — within an hour or instantly, depending on the traffic volumes.
8. No Native Conversion Optimisation Features
Google Analytics users have to use third-party tools to get deeper insights like how people are interacting with your webpage or call-to-action.
You can use the free Google Optimize tool, but it comes with limits :
- No segmentation is available
- Only 10 simultaneous running experiments allowed
There isn’t a native integration between Google Optimize and Google Analytics 4. Instead, you have to manually link an Optimize Container to an analytics account. Also, you can’t select experiment dimensions in Google Analytics reports.
What’s more, Google Optimize is a basic CRO tool, best suited for split testing (A/B testing) of copy, visuals, URLs and page layouts. If you want to get more advanced data, you need to pay for extra tools.
Matomo comes with a native set of built-in conversion optimization features :
- Heatmaps
- User session recording
- Sales funnel analysis
- A/B testing
- Form submission analytics
A/B test hypothesis testing on Matomo 9. Deprecated Annotations
Annotations come in handy when you need to provide extra context to other team members. For example, point out unusual traffic spikes or highlight a leak in the sales funnel.
This feature was available in Universal Analytics but is now gone in Google Analytics 4. But you can still quickly capture, comment and share knowledge with your team in Matomo.
You can add annotations to any graph that shows statistics over time including visitor reports, funnel analysis charts or running A/B tests.
10. No White Label Option
This might be a minor limitation of Google Analytics, but a tangible one for agency owners.
Offering an on-brand, embedded web analytics platform can elevate your customer experience. But white label analytics were never a thing with Google Analytics, unlike Matomo.
Wrap Up
Google set a high bar for web analytics. But Google Analytics inherent limitations around privacy, reporting and deployment options prompt more users to consider Google Analytics alternatives, like Matomo.
With Matomo, you can easily migrate your historical data records and store customer data locally or in a designated cloud location. We operate by a 100% unsampled data principle and provide an array of privacy controls for advanced compliance.
Start your 21-day free trial (no credit card required) to see how Matomo compares to Google Analytics !
21 day free trial. No credit card required.