Recherche avancée

Médias (2)

Mot : - Tags -/doc2img

Autres articles (68)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (8650)

  • Minimum FFMPEG configure options for H264 decoding

    26 novembre 2019, par Big Guy

    I’m working on a project using an LS1021A board, which has a Cortex-A7, NEON, FPU, etc, which seems to be very similar to a Raspberry Pi 2. We are streaming in H264 via RTP (UDP) with VLC to simulate an IP Camera with the end goal of extracting the raw RGB frame data (in a C app) to be used elsewhere in the system.

    So, I’d like to compile ffmpeg and the associated libs to do only H264 decoding, using libavcodec in C code. This will be running on a custom linux OS with tight size constraints, so lib size needs to be as small as possible.

    I have the following so far after a day or so of googling :

    ./configure --disable-encoders --disable-decoders --enable-decoder=h264 --enable-small --enable-cross-compile --arch-arm --target-os=linux --cpu=cortex-a7 --disable-debug --cross-prefix=${GCC_PREFIX} --prefix=/c/Users/labuser/Desktop/build --extra-cflags='march=armv7-a -mtune=cortex-a7 -mfpu=neon-vfpv4 -mfloat-abi=hard' --enable-neon --disable-devices --disable-sdl --disable-ffprobe --disable-ffserver --disable-doc --disable-w32threads --disable-ffplay

    Since I’ll be using libavcodec directly, I’m not sure if some of these —disable switches are needed, but can anyone give any pointers on if this looks acceptable or if there are any other switches I should be using ?

    Thanks !

  • configure : Increase minimum libx265 version

    8 janvier 2020, par Andriy Gelman
    configure : Increase minimum libx265 version
    

    libx265.c references a member x265_picture.quantOffsets (for ROI
    support) which was added in X265_BUILD 70. Increase the minimum libx265
    version to fix compilation.

    Signed-off-by : Andriy Gelman <andriy.gelman@gmail.com>
    Reviewed-by : Derek Buitenhuis <derek.buitenhuis@gmail.com>
    Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>

    • [DH] configure
  • dnn/native : add native support for minimum

    26 avril 2020, par Guo, Yejun
    dnn/native : add native support for minimum
    

    it can be tested with model file generated with below python script :
    import tensorflow as tf
    import numpy as np
    import imageio

    in_img = imageio.imread('input.jpg')
    in_img = in_img.astype(np.float32)/255.0
    in_data = in_img[np.newaxis, :]

    x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    x1 = tf.minimum(0.7, x)
    x2 = tf.maximum(x1, 0.4)
    y = tf.identity(x2, name='dnn_out')

    sess=tf.Session()
    sess.run(tf.global_variables_initializer())

    graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
    tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

    print("image_process.pb generated, please use \
    path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

    output = sess.run(y, feed_dict=x : in_data)
    imageio.imsave("out.jpg", np.squeeze(output))

    Signed-off-by : Guo, Yejun <yejun.guo@intel.com>

    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
    • [DH] tools/python/convert_from_tensorflow.py
    • [DH] tools/python/convert_header.py