Recherche avancée

Médias (1)

Mot : - Tags -/artwork

Autres articles (73)

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

Sur d’autres sites (7291)

  • Sony Launches Less Useful Z5U

    18 novembre 2009

    Sony today announced the NXCAM, an AVCHD-based "professional" camera which bears a striking resemblance to the EX1 and Z5U.

    You get 1080p exmor CMOS chips (presumably 1/3" ?) and records AVCHD to the highly popular (sarcasm) Memory Stick media.

    Pricing hasn’t been announced, but presumably it’ll be in the $4000 range like the Z5U. I’ll be curious to see how this shakes out in the market.

  • ANSI Code Coverage Followup

    9 mars 2012, par Multimedia Mike — Programming

    The people behind sixteencolors.net noticed my code coverage project concerning the ANSI video decoder and asked what they could do to help. I had already downloaded 350 / 4000 of their artpacks but didn’t want to download the remainder if I could avoid it. They offered to run my tool against their local collection of files.

    Aside : They have all of the artpacks archived at Github.

    The full corpus of nearly 4000 artpacks contains over 146,000 files. Versus my sampling of 350 artpacks and 13,000 files that covered all but 45 lines of the ansi.c source file, the full corpus has files to exercise… 6 more of those lines. Whee. This means that there are files which exercise the reverse and concealed attributes, all 3 “erase in line” modes, and one more error path (which probably wasn’t a valid file anyway).

    Missing features mostly cluster around different video modes, including : 320×200 (25 rows), 640×200 (25 rows), 640×350 (43 rows), and 640×480 (60 rows) ; on the plus side, nothing tripped the “unsupported screen mode” case. There are no files that switch modes during playback.

    I guess statistical sampling theory holds out here– a small set of randomly chosen files would do a fine job covering code. But this experiment is about finding the statistical outliers.

  • How To Play Hardware Accelerated Video on A Mac

    28 mai 2013, par Multimedia Mike — General

    I have a friend who was considering purchasing a Mac Mini recently. At the time of this writing, there are 3 desktop models (and 2 more “server” models).


    Apple Mac Mini

    The cheapest one is a Core i5 2.5 GHz. Then there are 2 Core i7 models : 2.3 GHz and 2.6 GHz. The difference between the latter 2 is US$100. The only appreciable technical difference is the extra 0.3 GHz and the choice came down to those 2.

    He asked me which one would be able to play HD video at full frame rate. I found this query puzzling. But then, I have been “in the biz” for a bit too long. Whether or not a computer or device can play a video well depends on a lot of factors.

    Hardware Support
    First of all, looking at the raw speed of the general-purpose CPU inside of a computer as a gauge of video playback performance is generally misguided in this day and age. In general, we have a video standard (H.264, which I’ll focus on for this post) and many bits of hardware are able to accelerate decoding. So, the question is not whether the CPU can decode the data in real time, but can any other hardware in the device (likely the graphics hardware) handle it ? These machines have Intel HD 4000 graphics and, per my reading of the literature, they are capable of accelerating H.264 video decoding.

    Great, so the hardware supports accelerated decoding. So it’s a done deal, right ? Not quite…

    Operating System Support
    An application can’t do anything pertaining to hardware without permission from the operating system. So the next question is : Does Mac OS X allow an application to access accelerated video decoding hardware if it’s available ? This used to be a contentious matter (notably, Adobe Flash Player was unable to accelerate H.264 playback on Mac in the absence of such an API) but then Apple released an official API detailed in Technical Note TN2267.

    So, does this mean that video is magically accelerated ? Nope, we’re still not there yet…

    Application Support
    It’s great that all of these underlying pieces are in place, but if an individual application chooses to decode the video directly on the CPU, it’s all for naught. An application needs to query the facilities and direct data through the API if it wants to leverage the acceleration. Obviously, at this point it becomes a matter of “which application ?”

    My friend eventually opted to get the pricier of the desktop Mac Mini models and we ran some ad-hoc tests since I was curious how widespread the acceleration support is among Mac multimedia players. Here are some programs I wanted to test, playing 1080p H.264 :

    • Apple QuickTime Player
    • VLC
    • YouTube with Flash Player (any browser)
    • YouTube with Safari/HTML5
    • YouTube with Chrome/HTML5
    • YouTube with Firefox/HTML5
    • Netflix

    I didn’t take exhaustive notes but my impromptu tests revealed QuickTime Player was, far and away, the most performant player, occupying only around 5% of the CPU according to the Mac OS X System Profiler graph (which is likely largely spent on audio decoding).

    VLC consistently required 20-30% CPU, so it’s probably leveraging some acceleration facilities. I think that Flash Player and the various HTML5 elements performed similarly (their multi-process architectures can make such a trivial profiling test difficult).

    The outlier was Netflix running in Firefox via Microsoft’s Silverlight plugin. Of course, the inner workings of Netflix’s technology are opaque to outsiders and we don’t even know if it uses H.264. It may very well use Microsoft’s VC-1 which is not a capability provided by the Mac OS X acceleration API (it doesn’t look like the Intel HD 4000 chip can handle it either). I have never seen any data one way or another about how Netflix encodes video. However, I was able to see that Netflix required an enormous amount of CPU muscle on the Mac platform.

    Conclusion
    The foregoing is a slight simplification of the video playback pipeline. There are some other considerations, most notably how the video is displayed afterwards. To circle back around to the original question : Can the Mac Mini handle full HD video playback ? As my friend found, the meager Mac Mini can do an admirable job at playing full HD video without loading down the CPU.