Recherche avancée

Médias (1)

Mot : - Tags -/ogg

Autres articles (70)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Emballe Médias : Mettre en ligne simplement des documents

    29 octobre 2010, par

    Le plugin emballe médias a été développé principalement pour la distribution mediaSPIP mais est également utilisé dans d’autres projets proches comme géodiversité par exemple. Plugins nécessaires et compatibles
    Pour fonctionner ce plugin nécessite que d’autres plugins soient installés : CFG Saisies SPIP Bonux Diogène swfupload jqueryui
    D’autres plugins peuvent être utilisés en complément afin d’améliorer ses capacités : Ancres douces Légendes photo_infos spipmotion (...)

Sur d’autres sites (7922)

  • Dreamcast Track Sizes

    1er mars 2015, par Multimedia Mike — Sega Dreamcast

    I’ve been playing around with Sega Dreamcast discs lately. Not playing the games on the DC discs, of course, just studying their structure. To review, the Sega Dreamcast game console used special optical discs named GD-ROMs, where the GD stands for “gigadisc”. They are capable of holding about 1 gigabyte of data.

    You know what’s weird about these discs ? Each one manages to actually store a gigabyte of data. Each disc has a CD portion and a GD portion. The CD portion occupies the first 45000 sectors and can be read in any standard CD drive. This area is divided between a brief data track and a brief (usually) audio track.

    The GD region starts at sector 45000. Sometimes, it’s just one humongous data track that consumes the entire GD region. More often, however, the data track is split between the first track and the last track in the region and there are 1 or more audio tracks in between. But the weird thing is, the GD region is always full. I made a study of it (click for a larger, interactive graph) :


    Dreamcast Track Sizes

    Some discs put special data or audio bonuses in the CD region for players to discover. But every disc manages to fill out the GD region. I checked up on a lot of those audio tracks that divide the GD data and they’re legitimate music tracks. So what’s the motivation ? Why would the data track be split in 2 pieces like that ?

    I eventually realized that I probably answered this question in this blog post from 4 years ago. The read speed from the outside of an optical disc is higher than the inside of the same disc. When I inspect the outer data tracks of some of these discs, sure enough, there seem to be timing-sensitive multimedia FMV files living on the outer stretches.

    One day, I’ll write a utility to take apart the split ISO-9660 filesystem offset from a weird sector.

  • Twitch stream with FFMpeg using multiple audio inputs [on hold]

    23 décembre 2014, par Josh Raymond

    I’m using the following script to try and stream my linux desktop to Twitch.tv, I have the stream working, but I want to throw in 2 audio inputs into the stream (one for the game, and one for my mic)

    Here’s the script

    #! /bin/bash
    INRES="1900x600"
    OUTRES="800x600"
    INAUD="pulse"
    FPS="25
    STREAM_KEY=$(cat ~/.twitch_key)
    STREAM_URL="rtmp://live.twitch.tv/app/$STREAM_KEY"

    ffmpeg \
    -f alsa -ac 2 -i "$INAUD" \
    -f x11grab -s "$INRES" -r "$FPS" -i :0.0+1280,0 \
    -vcodec libx264 -s "$OUTRES" -pix_fmt yuv420p \
    -acodec libmp3lame -threads 6 -qscale 5 -b 64KB \
    -f flv -ar 44100 "$STREAM_URL"

    I use Pulseaudio and have pavucontrol, if that matters. The game would be on "Build-in Audio Analog Stereo" and the mic is from the recording device "Webcam C110 Analog Mono"

    Thanks in advance.

  • VP8 And FFmpeg

    18 juin 2010, par Multimedia Mike — VP8

    UPDATE, 2010-06-17 : You don’t need to struggle through these instructions anymore. libvpx 0.9.1 and FFmpeg 0.6 work together much better. Please see this post for simple instructions on getting up and running quickly.

    Let’s take the VP8 source code (in Google’s new libvpx library) for a spin ; get it to compile and hook it up to FFmpeg. I am hesitant to publish specific instructions for building in the somewhat hackish manner available on day 1 (download FFmpeg at a certain revision and apply a patch) since that kind of post has a tendency to rise in Google rankings. I will just need to remember to update this post after the library patches are applied to the official FFmpeg tree.

    Statement of libvpx’s Relationship to FFmpeg
    I don’t necessarily speak officially for FFmpeg. But I’ve been with the project long enough to explain how certain things work.

    Certainly, some may wonder if FFmpeg will incorporate Google’s newly open sourced libvpx library into FFmpeg. In the near term, FFmpeg will support encoding and decoding VP8 via external library as it does with a number of other libraries (most popularly, libx264). FFmpeg will not adopt the code for its own codebase, even if the license may allow it. That just isn’t how the FFmpeg crew rolls.

    In the longer term, expect the FFmpeg project to develop an independent, interoperable implementation of the VP8 decoder. Sometime after that, there may also be an independent VP8 encoder as well.

    Building libvpx
    Download and build libvpx. This is a basic ’configure && make’ process. The build process creates a static library, a bunch of header files, and 14 utilities. A bunch of these utilities operate on a file format called IVF which is apparently a simple transport method for VP8. I have recorded the file format on the wiki.

    We could use a decoder for this in the FFmpeg code base for testing VP8 in the future. Who’s game ? Just as I was proofreading this post, I saw that David Conrad has sent an IVF demuxer to the ffmpeg-devel list.

    There doesn’t seem to be a ’make install’ step for the library. Instead, go into the overly long directory (on my system, this is generated as vpx-vp8-nopost-nodocs-generic-gnu-v0.9.0), copy the contents of include/ to /usr/local/include and the static library in lib/ to /usr/local/lib .

    Building FFmpeg with libvpx
    Download FFmpeg source code at the revision specified or take your chances with the latest version (as I did). Download and apply provided patches. This part hurts since there is one diff per file. Most of them applied for me.

    Configure FFmpeg with 'configure --enable-libvpx_vp8 --enable-pthreads'. Ideally, this should yield no complaints and ’libvpx_vp8’ should show up in the enabled decoders and encoders sections. The library apparently relies on threading which is why '--enable-pthreads' is necessary. After I did this, I was able to create a new webm/VP8/Vorbis file simply with :

     ffmpeg -i input_file output_file.webm
    

    Unfortunately, I can’t complete the round trip as decoding doesn’t seem to work. Passing the generated .webm file back into FFmpeg results in a bunch of errors of this format :

    [libvpx_vp8 @ 0x8c4ab20]v0.9.0
    [libvpx_vp8 @ 0x8c4ab20]Failed to initialize decoder : Codec does not implement requested capability
    

    Maybe this is the FFmpeg revision mismatch biting me.

    FFmpeg Presets
    FFmpeg features support for preset files which contain collections of tuning options to be loaded into the program. Google provided some presets along with their FFmpeg patches :

    • 1080p50
    • 1080p
    • 360p
    • 720p50
    • 720p

    To invoke one of these (assuming the program has been installed via ’make install’ so that the presets are in the right place) :

     ffmpeg -i input_file -vcodec libvpx_vp8 -vpre 720p output_file.webm
    

    This will use a set of parameters that are known to do well when encoding a 720p video.

    Code Paths
    One of goals with this post was to visualize a call graph after I got the decoder hooked up to FFmpeg. Fortunately, this recon is greatly simplified by libvpx’s simple_decoder utility. Steps :

    • Build libvpx with --enable-gprof
    • Run simple_decoder on an IVF file
    • Get the pl_from_gprof.pl and dot_from_pl.pl scripts frome Graphviz’s gprof filters
    • gprof simple_decoder | ./pl_from_gprof.pl | ./dot_from_pl.pl > 001.dot
    • Remove the 2 [graph] and 1 [node] modifiers from the dot file (they only make the resulting graph very hard to read)
    • dot -Tpng 001.dot > 001.png

    Here are call graphs generated from decoding test vectors 001 and 017.


    Like this, only much larger and scarier (click for full graph)


    It’s funny to see several functions calling an empty bubble. Probably nothing to worry about. More interesting is the fact that a lot of function_c() functions are called. The ’_c’ at the end is important— that generally indicates that there are (or could be) SIMD-optimized versions. I know this codebase has plenty of assembly. All of the x86 ASM files appear to be written such that they could be compiled with NASM.

    Leftovers
    One interesting item in the code was vpx_scale/leapster. Is this in reference to the Leapster handheld educational gaming unit ? Based on this item from 2005 (archive.org copy), some Leapster titles probably used VP6. This reminds me of finding references to the PlayStation in Duck/On2’s original VpVision source release. I don’t know of any PlayStation games that used Duck’s original codecs but with thousands to choose from, it’s possible that we may find a few some day.