
Recherche avancée
Médias (1)
-
La conservation du net art au musée. Les stratégies à l’œuvre
26 mai 2011
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (59)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...) -
Gestion générale des documents
13 mai 2011, parMédiaSPIP ne modifie jamais le document original mis en ligne.
Pour chaque document mis en ligne il effectue deux opérations successives : la création d’une version supplémentaire qui peut être facilement consultée en ligne tout en laissant l’original téléchargeable dans le cas où le document original ne peut être lu dans un navigateur Internet ; la récupération des métadonnées du document original pour illustrer textuellement le fichier ;
Les tableaux ci-dessous expliquent ce que peut faire MédiaSPIP (...)
Sur d’autres sites (7765)
-
Method For Crawling Google
28 mai 2011, par Multimedia Mike — Big DataI wanted to crawl Google in order to harvest a large corpus of certain types of data as yielded by a certain search term (we’ll call it “term” for this exercise). Google doesn’t appear to offer any API to automatically harvest their search results (why would they ?). So I sat down and thought about how to do it. This is the solution I came up with.
FAQ
Q : Is this legal / ethical / compliant with Google’s terms of service ?
A : Does it look like I care ? Moving right along…Manual Crawling Process
For this exercise, I essentially automated the task that would be performed by a human. It goes something like this :- Search for “term”
- On the first page of results, download each of the 10 results returned
- Click on the next page of results
- Go to step 2, until Google doesn’t return anymore pages of search results
Google returns up to 1000 results for a given search term. Fetching them 10 at a time is less than efficient. Fortunately, the search URL can easily be tweaked to return up to 100 results per page.
Expanding Reach
Problem : 1000 results for the “term” search isn’t that many. I need a way to expand the search. I’m not aiming for relevancy ; I’m just searching for random examples of some data that occurs around the internet.My solution for this is to refine the search using the “site” wildcard. For example, you can ask Google to search for “term” at all Canadian domains using “site :.ca”. So, the manual process now involves harvesting up to 1000 results for every single internet top level domain (TLD). But many TLDs can be more granular than that. For example, there are 50 sub-domains under .us, one for each state (e.g., .ca.us, .ny.us). Those all need to be searched independently. Same for all the sub-domains under TLDs which don’t allow domains under the main TLD, such as .uk (search under .co.uk, .ac.uk, etc.).
Another extension is to combine “term” searches with other terms that are likely to have a rich correlation with “term”. For example, if “term” is relevant to various scientific fields, search for “term” in conjunction with various scientific disciplines.
Algorithmically
My solution is to create an SQLite database that contains a table of search seeds. Each seed is essentially a “site :” string combined with a starting index.Each TLD and sub-TLD is inserted as a searchseed record with a starting index of 0.
A script performs the following crawling algorithm :
- Fetch the next record from the searchseed table which has not been crawled
- Fetch search result page from Google
- Scrape URLs from page and insert each into URL table
- Mark the searchseed record as having been crawled
- If the results page indicates there are more results for this search, insert a new searchseed for the same seed but with a starting index 100 higher
Digging Into Sites
Sometimes, Google notes that certain sites are particularly rich sources of “term” and offers to let you search that site for “term”. This basically links to another search for ‘term site:somesite”. That site gets its own search seed and the program might harvest up to 1000 URLs from that site alone.Harvesting the Data
Armed with a database of URLs, employ the following algorithm :- Fetch a random URL from the database which has yet to be downloaded
- Try to download it
- For goodness sake, have a mechanism in place to detect whether the download process has stalled and automatically kill it after a certain period of time
- Store the data and update the database, noting where the information was stored and that it is already downloaded
This step is easy to parallelize by simply executing multiple copies of the script. It is useful to update the URL table to indicate that one process is already trying to download a URL so multiple processes don’t duplicate work.
Acting Human
A few factors here :- Google allegedly doesn’t like automated programs crawling its search results. Thus, at the very least, don’t let your script advertise itself as an automated program. At a basic level, this means forging the User-Agent : HTTP header. By default, Python’s urllib2 will identify itself as a programming language. Change this to a well-known browser string.
- Be patient ; don’t fire off these search requests as quickly as possible. My crawling algorithm inserts a random delay of a few seconds in between each request. This can still yield hundreds of useful URLs per minute.
- On harvesting the data : Even though you can parallelize this and download data as quickly as your connection can handle, it’s a good idea to randomize the URLs. If you hypothetically had 4 download processes running at once and they got to a point in the URL table which had many URLs from a single site, the server might be configured to reject too many simultaneous requests from a single client.
Conclusion
Anyway, that’s just the way I would (and did) do it. What did I do with all the data ? That’s a subject for a different post. -
Merge video and audio with ffmpeg. Loop the video while audio is not over
3 novembre 2016, par fstephanyI’m trying to merge an audio file with a video file.
I have two options :-
Have a very small video file (e.g., 10 seconds) that loop while the audio file is not over.
-
Have a very long video file (longer than any of my audio file) on which I can attach the audio file. I would like to cut the video when the audio is finished.
I’ve using the latter with the -t option of ffmpeg. It means I have to get the duration of the audio file to feed it into ffmpeg. Is it possible to avoid this step ?
Any pointer for the first solution ?
-
-
Evolution #2426 (Fermé) : Utilisation des fonctionnalitées de cache du serveur web
23 novembre 2011, par Guillaume nomPourquoi ne pas ajouter dans le fichier htaccess.txt livré avec SPIP l’utilisation de module type mod_expire/mod_deflate de manière conditionnelle ? Petit exemple : ExpiresActive On ExpiresDefault "access plus 30 seconds" ExpiresByType text/html "access plus 60 seconds" ExpiresByType (...)