
Recherche avancée
Médias (1)
-
MediaSPIP Simple : futur thème graphique par défaut ?
26 septembre 2013, par
Mis à jour : Octobre 2013
Langue : français
Type : Video
Autres articles (112)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)
Sur d’autres sites (15305)
-
Cortex-A7 instruction cycle timings
15 mai 2014, par Mans — ARMThe Cortex-A7 ARM core is a popular choice in low-power and low-cost designs. Unfortunately, the public TRM does not include instruction timing information. It does reveal that execution is in-order which makes measuring the throughput and latency for individual instructions relatively straight-forward.
The table below lists the measured issue cycles (inverse throughput) and result latency of some commonly used instructions.
It should be noted that in some cases, the perceived latency depends on the instruction consuming the result. Most of the values were measured with the result used as input to the same instruction. For instructions with multiple outputs, the latencies of the result registers may also differ.
Finally, although instruction issue is in-order, completion is out of order, allowing independent instructions to issue and complete unimpeded while a multi-cycle instruction is executing in another unit. For example, a 3-cycle MUL instruction does not block ADD instructions following it in program order.
ALU instructions Issue cycles Result latency MOV Rd, Rm 1/2 1 ADD Rd, Rn, #imm 1/2 1 ADD Rd, Rn, Rm 1 1 ADD Rd, Rn, Rm, LSL #imm 1 1 ADD Rd, Rn, Rm, LSL Rs 1 1 LSL Rd, Rn, #imm 1 2 LSL Rd, Rn, Rs 1 2 QADD Rd, Rn, Rm 1 2 QADD8 Rd, Rn, Rm 1 2 QADD16 Rd, Rn, Rm 1 2 CLZ Rd, Rm 1 1 RBIT Rd, Rm 1 2 REV Rd, Rm 1 2 SBFX Rd, Rn 1 2 BFC Rd, #lsb, #width 1 2 BFI Rd, Rn, #lsb, #width 1 2 NOTE : Shifted operands and shift amounts needed one cycle early. Multiply instructions Issue cycles Result latency MUL Rd, Rn, Rm 1 3 MLA Rd, Rn, Rm, Ra 1 31 SMULL Rd, RdHi, Rn, Rm 1 3 SMLAL Rd, RdHi, Rn, Rm 1 31 SMMUL Rd, Rn, Rm 1 3 SMMLA Rd, Rn, Rm, Ra 1 31 SMULBB Rd, Rn, Rm 1 3 SMLABB Rd, Rn, Rm, Ra 1 31 SMULWB Rd, Rn, Rm 1 3 SMLAWB Rd, Rn, Rm, Ra 1 31 SMUAD Rd, Rn, Rm 1 3 1 Accumulator forwarding allows back to back MLA instructions without delay. Divide instructions Issue cycles Result latency SDIV Rd, Rn, Rm 4-20 6-22 UDIV Rd, Rn, Rm 3-19 5-21 Load/store instructions Issue cycles Result latency LDR Rt, [Rn] 1 3 LDR Rt, [Rn, #imm] 1 3 LDR Rt, [Rn, Rm] 1 3 LDR Rt, [Rn, Rm, lsl #imm] 1 3 LDRD Rt, Rt2, [Rn] 1 3-4 LDM Rn, regs 1-8 3-10 STR Rt, [Rn] 1 2 STRD Rt, Rt2, [Rn] 1 2 STM Rn, regs 1-10 2-12 NOTE : Load results are forwarded to dependent stores without delay. VFP instructions Issue cycles Result latency VMOV.F32 Sd, Sm 1 4 VMOV.F64 Dd, Dm 1 4 VNEG.F32 Sd, Sm 1 4 VNEG.F64 Dd, Dm 1 4 VABS.F32 Sd, Sm 1 4 VABS.F64 Dd, Dm 1 4 VADD.F32 Sd, Sn, Sm 1 4 VADD.F64 Dd, Dn, Dm 1 4 VMUL.F32 Sd, Sn, Sm 1 4 VMUL.F64 Dd, Dn, Dm 4 7 VMLA.F32 Sd, Sn, Sm 1 81 VMLA.F64 Dd, Dn, Dm 4 112 VFMA.F32 Sd, Sn, Sm 1 81 VFMA.F64 Dd, Dn, Dm 5 82 VDIV.F32 Sd, Sn, Sm 15 18 VDIV.F64 Dd, Dn, Dm 29 32 VSQRT.F32 Sd, Sm 14 17 VSQRT.F64 Dd, Dm 28 31 VCVT.F32.F64 Sd, Dm 1 4 VCVT.F64.F32 Dd, Sm 1 4 VCVT.F32.S32 Sd, Sm 1 4 VCVT.F64.S32 Dd, Sm 1 4 VCVT.S32.F32 Sd, Sm 1 4 VCVT.S32.F64 Sd, Dm 1 4 VCVT.F32.S32 Sd, Sd, #fbits 1 4 VCVT.F64.S32 Dd, Dd, #fbits 1 4 VCVT.S32.F32 Sd, Sd, #fbits 1 4 VCVT.S32.F64 Dd, Dd, #fbits 1 4 1 5 cycles with dependency only on accumulator.
2 8 cycles with dependency only on accumulator.NEON integer instructions Issue cycles Result latency VADD.I8 Dd, Dn, Dm 1 4 VADDL.S8 Qd, Dn, Dm 2 4 VADD.I8 Qd, Qn, Qm 2 4 VMUL.I8 Dd, Dn, Dm 2 4 VMULL.S8 Qd, Dn, Dm 2 4 VMUL.I8 Qd, Qn, Qm 4 4 VMLA.I8 Dd, Dn, Dm 2 4 VMLAL.S8 Qd, Dn, Dm 2 4 VMLA.I8 Qd, Qn, Qm 4 4 VADD.I16 Dd, Dn, Dm 1 4 VADDL.S16 Qd, Dn, Dm 2 4 VADD.I16 Qd, Qn, Qm 2 4 VMUL.I16 Dd, Dn, Dm 1 4 VMULL.S16 Qd, Dn, Dm 2 4 VMUL.I16 Qd, Qn, Qm 2 4 VMLA.I16 Dd, Dn, Dm 1 4 VMLAL.S16 Qd, Dn, Dm 2 4 VMLA.I16 Qd, Qn, Qm 2 4 VADD.I32 Dd, Dn, Dm 1 4 VADDL.S32 Qd, Dn, Dm 2 4 VADD.I32 Qd, Qn, Qm 2 4 VMUL.I32 Dd, Dn, Dm 2 4 VMULL.S32 Qd, Dn, Dm 2 4 VMUL.I32 Qd, Qn, Qm 4 4 VMLA.I32 Dd, Dn, Dm 2 4 VMLAL.S32 Qd, Dn, Dm 2 4 VMLA.I32 Qd, Qn, Qm 4 4 NEON floating-point instructions Issue cycles Result latency VADD.F32 Dd, Dn, Dm 2 4 VADD.F32 Qd, Qn, Qm 4 4 VMUL.F32 Dd, Dn, Dm 2 4 VMUL.F32 Qd, Qn, Qm 4 4 VMLA.F32 Dd, Dn, Dm 2 81 VMLA.F32 Qd, Qn, Qm 4 81 1 5 cycles with dependency only on accumulator. NEON permute instructions Issue cycles Result latency VEXT.n Dd, Dn, Dm, #imm 1 4 VEXT.n Qd, Qn, Qm, #imm 2 5 VTRN.n Dd, Dn, Dm 2 5 VTRN.n Qd, Qn, Qm 4 5 VUZP.n Dd, Dn, Dm 2 5 VUZP.n Qd, Qn, Qm 4 6 VZIP.n Dd, Dn, Dm 2 5 VZIP.n Qd, Qn, Qm 4 6 VTBL.8 Dd, Dn, Dm 1 4 VTBL.8 Dd, Dn-Dn+1, Dm 1 4 VTBL.8 Dd, Dn-Dn+2, Dm 2 5 VTBL.8 Dd, Dn-Dn+3, Dm 2 5 -
Compile FFmpeg with x264 for MacOS and Windows on Linux
9 mars 2023, par RobinFrcdI successfully managed to compile a minimal standalone FFmpeg binary to create MP4 videos from JPG images encoded with x264. The binary is 100% functional and is 5.2MB.


To do that, I used :


./configure \
--disable-everything \
--enable-decoder=mjpeg \
--enable-encoder=libx264 \
--enable-protocol=concat,file \
--enable-demuxer=image2 \
--enable-muxer=mp4 \
--enable-filter=scale \
--enable-gpl \
--enable-libx264 \
--extra-ldexeflags="-static" \
--pkg-config="pkg-config --static"



I now would like to build the macOS and windows binaries directly from my Linux machine. I tried this repo and replaced the config args with mine, but the output exe is 30MB+. And I don't find anything about building for MacOS.


Is there a solution to make this minimal build cross-platform compatible ?


-
avcodec/mp3 : fix skipping zeros
30 septembre 2015, par wm4avcodec/mp3 : fix skipping zeros
Commits 43bc5cf9 and c5371f77 add code for skipping initial zeros in mp3
packets. This code forgot to report to the user that data was skipped at
all.Since audio codecs allow partial packet decoding, the user application
has to rely on the return value. It will remove the data reported as
consumed by the decoder, and feed it to the decoder again. This resulted
in the mp3 frame after the zero region to be decoded over and over
again, until the zero region was finally skipped by the application.Fix this by including the amount of skipped bytes to the number of
consumed bytes returned by the decode call.Fixes trac ticket #4890.