Recherche avancée

Médias (2)

Mot : - Tags -/kml

Autres articles (112)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

Sur d’autres sites (14640)

  • Anomalie #3617 : objet_modifier_champ

    10 décembre 2015, par jluc -

    En l’occurence, c’est avec gis : gis_modifier est appelé et appelle
    objet_modifier_champs(gis, 1976, options=Array ( [invalideur] => id=’gis/1976’ ), c=Array (
    [titre] => Annonce 10630 — Recherche une chambre temporaire !
    [lat] => 44.8964144
    [lon] => 4.6452795
    [code_pays] => fr
    [pays] => France
    [zoom] => 6
    [descriptif] =>
    [adresse] =>
    [region] =>
    [ville] => Vernoux-en-Vivarais
    [departement] => Ardèche
    )
    Le conflit détecté est :
    = Array
    ( [titre] => Array (
    [base] =>
    [post] => Annonce 10630 — Recherche une chambre temporaire !
    )
    )

  • Hareware accelerated HEVC encode/decode in python on Intel x64 with Nvidia GPU [closed]

    24 mars 2021, par Jason M

    I am working on a python project of decoding a 4k@25fps hevc stream from a IP camera, processing it, croping some region-of-interest and encoding each into a new stream. The program runs on a Intel i7-10700 PC with NVidia Gtx1080. I see that opencv offers Intel MediaSDK support and cuda codec, while Nvidia offers PyNvCodec.

    


    What may be my best combination of hardware-accelerated encoding/decoding options ? A demo project would be nicer.

    


  • Struggling getting FFMPEG to work on Lambda function (Serverless Framework)

    3 juin 2022, par Red Vic

    I've been trying to get FFMPEG to work on my serverless framework for hours and I can't get to grasp how all this should work.

    


    This is my JavaScript code in the handler (just for testing purposes) :

    


    require("dotenv").config();

const ffmpegSync = (url) => {
  const ffmpeg = require("fluent-ffmpeg");
  ffmpeg.setFfprobePath("/opt/ffmpeg-layer/ffprobe");
  ffmpeg.setFfmpegPath("/opt/ffmpeg-layer/ffmpeg")

  return new Promise((resolve, reject) => {
    ffmpeg.ffprobe(url, async (err, metadata) => {
      if (err) {
        resolve(err);
      }
      console.log(metadata);
      resolve(metadata);
    });
  });
};

const ffmpegTeller = async (e, context) => {
  const AWS = require("aws-sdk");

  const s3 = new AWS.S3();
  AWS.config.update({
    accessKeyId: process.env.AWS_ACCESS_KEY,
    secretAccessKey: process.env.AWS_SECRET_KEY,
    region: "us-east-1",
  });

  const sourceBucket = e["Records"][0]["s3"]["bucket"]["name"];
  const sourceKey = e["Records"][0]["s3"]["object"]["key"];
  const signedUrlExpireSeconds = 60 * 5;

  const url = s3.getSignedUrl("getObject", {
    Bucket: sourceBucket,
    Key: sourceKey,
    Expires: signedUrlExpireSeconds,
  });

  await ffmpegSync(url).then((data) => {
    console.log(data);
    return {
      body: JSON.stringify(data),
      statusCode: 200,
    };
  });
};

module.exports = {
  ffmpegTeller,
};


    


    serverless.yaml :

    


    service: my-ffmpeg-api
frameworkVersion: '3'

provider:
  name: aws
  runtime: nodejs14.x
  region: us-east-1

functions:
  ffmpegTeller:
    handler: handler.ffmpegTeller
    events: 
      - s3:
          bucket: sourceBucket
          event: s3:ObjectCreated:*


    


    package.json

    


    {
  "dependencies": {
    "dotenv": "^16.0.1",
    "fluent-ffmpeg": "^2.1.2"
  }
}


    


    The error I'm getting on CloudWatch when trying to use FFprobe
enter image description here

    


    This is the view on the Lambda function page on AWS :

    


    enter image description here

    


    I'd really appreciate some help. I'm really going mad. Thanks in advance.