Recherche avancée

Médias (91)

Autres articles (50)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (9580)

  • My SBC Collection

    31 décembre 2023, par Multimedia Mike — General

    Like many computer nerds in the last decade, I have accumulated more than a few single-board computers, or “SBCs”, which are small computers based around a system-on-a-chip (SoC) that nearly always features an ARM CPU at its core. Surprisingly few of these units are Raspberry Pi units, though that brand has come to exemplify and dominate the product category.

    Also, as is the case for many computer nerds, most of these SBCs lay fallow for years at a time. Equipped with an inexpensive lightbox that I procured in the last year, I decided I could at least create glamour shots of various units and catalog them in a blog post.

    While Raspberry Pi still enjoys the most mindshare far and away, and while I do have a few Raspberry Pi units in my inventory, I have always been a bigger fan of the ODROID brand, which works with convenient importers around the world (in the USA, I can vouch for Ameridroid, to whom I’ve forked over a fair amount of cash for these computing toys).

    As mentioned, Raspberry Pi undisputedly has the most mindshare of all these SBC brands and I often wonder why… and then I immediately remind myself that it has the biggest ecosystem, and has a variety of turnkey projects and applications (such as Pi-hole and PiVPN) that promise a lower barrier to entry — as well as a slightly lower price point — than some of these other options. ODROID had a decent ecosystem for awhile, especially considering the monthly ODROID Magazine, though that ceased publication in July 2020. The Raspberry Pi and its variants were famously difficult to come by due to the global chip shortage from 2021-2023. Meanwhile, I had no trouble procuring these boards during the same timeframe.

    So let’s delve into the collection…

    Cubieboard
    The Raspberry Pi came out in 2012 and by 2013 I was somewhat coveting one to hack on. Finally ! An accessible ARM platform to play with. I had heard of the BeagleBoard for years but never tried to get my hands on one. I was thinking about taking the plunge on a new Raspberry Pi, but a colleague told me I should skip that and go with this new hotness called the Cubieboard, based on an Allwinner SoC. The big value-add that this board had vs. a Raspberry Pi was that it had a SATA adapter. Although now that it has been a decade, it only now occurs to me to quander whether it was true SATA or a USB-to-SATA bridge. Looking it up now, I’m led to believe that the SoC supported the functionality natively.

    Anyway, I did get it up and running but never did much with it, thus setting the tone for future SBC endeavors. No photos because I gave it to another tech enthusiast years ago, whose SBC collection dwarfs my own.

    ODROID-XU4
    I can’t recall exactly when or how I first encountered the ODROID brand. I probably read about it on some enthusiast page or another circa 2014 and decided to try one out. I eventually acquired a total of 3 of these ODROID-XU4 units, each with a different case, 1 with a fan and 2 passively-cooled :

    Collection of ODROID-XU4 SBCs

    Collection of ODROID-XU4 SBCs

    This is based on the Samsung Exynos 5422 SoC, the same series as was used in their Note 3 phone released in 2013. It has been a fun chip to play with. The XU4 was also my first introduction to the eMMC storage solution that is commonly supported on the ODROID SBCs (alongside micro-SD). eMMC offers many benefits over SD in terms of read/write speed as well as well as longevity/write cycles. That’s getting less relevant these days, however, as more and more SBCs are being released with direct NVMe SSD support.

    I had initially wanted to make a retro-gaming device built on this platform (see the handheld section later for more meditations on that). In support of this common hobbyist goal, there is this nifty case XU4 case which apes the aesthetic of the Nintendo N64 :

    ODROID-XU4 N64-style case

    ODROID-XU4 N64-style case

    It even has a cool programmable LCD screen. Maybe one day I’ll find a use for it.

    For awhile, one of these XU4 units (likely the noisy, fan-cooled one) was contributing results to the FFmpeg FATE system.

    While it features gigabit ethernet and a USB3 port, I once tried to see if I could get 2 Gbps throughput with the unit using a USB3-gigabit dongle. I had curious results in that the total amount of traffic throughput could never exceed 1 Gbps across both interfaces. I.e., if 1 interface was dealing with 1 Gbps and the other interface tried to run at 1 Gbps, they would both only run at 500 Mbps. That remains a mystery to me since I don’t see that limitation with Intel chips.

    Still, the XU4 has been useful for a variety of projects and prototyping over the years.

    ODROID-HC2 NAS
    I find that a lot of my fellow nerds massively overengineer their homelab NAS setups. I’ll explore this in a future post. For my part, people tend to find my homelab NAS solution slightly underengineered. This is the ODROID-HC2 (the “HC” stands for “Home Cloud”) :

    ODROID-HC2 NAS

    ODROID-HC2 NAS

    It has the same guts as the ODROID-XU4 except no video output and the USB3 function is leveraged for a SATA bridge. This allows you to plug a SATA hard drive directly into the unit :

    ODROID-HC2 NAS uncovered

    ODROID-HC2 NAS uncovered

    Believe it or not, this has been my home NAS solution for something like 6 or 7 years now– I don’t clearly remember when I purchased it and put it into service.

    But isn’t this sort of irresponsible ? What about a failure of the main drive ? That’s why I have an external drive connected for backing up the most important data via rsync :

    ODROID-HC2 NAS backup enclosure

    ODROID-HC2 NAS backup enclosure

    The power consumption can’t be beat– Profiling for a few weeks of average usage worked out to 4.5 kWh for the ODROID-HC2… per month.

    ODROID-C2
    I was on a kick of ordering more SBCs at one point. This is the ODROID-C2, equipped with a 64-bit Amlogic SoC :

    ODROID-C2

    ODROID-C2

    I had this on the FATE farm for awhile, performing 64-bit ARM builds (vs. the XU4’s 32-bit builds). As memory serves, it was unreliable and would occasionally freeze up.

    Here is a view of the eMMC storage through the bottom of the translucent case :

    Bottom of ODROID-C2 with view of eMMC storage

    Bottom of ODROID-C2 with view of eMMC storage

    ODROID-N2+
    Out of all my ODROID SBCs, this is the unit that I long to “get back to” the most– the ODROID-N2+ :

    ODROID-N2+

    ODROID-N2+

    Very capable unit that makes a great little desktop. I have some projects I want to develop using it so that it will force me to have a focused development environment.

    Raspberry Pi
    Eventually, I did break down and get a Raspberry Pi. I had a specific purpose in mind and, much to my surprise, I have stuck to it :

    Original Raspberry Pi

    Original Raspberry Pi

    I was using one of the ODROID-XU4 units as a VPN gateway. Eventually, I wanted to convert the XU4 to something else and I decided to run the VPN gateway as an appliance on the simplest device I could. So I procured this complete hand-me-down unit from eBay and went to work. This was also the first time I discovered the DietPi distribution and this box has been in service running Wireguard via PiVPN for many years.

    I also have a Raspberry Pi 3B+ kicking around somewhere. I used it as a Steam Link device for awhile.

    SOPINE + Baseboard
    Also procured when I was on this “let’s buy random SBCs” kick. The Pine64 SOPINE is actually a compute module that comes in the form factor of a memory module.

    Pine64 SOPINE Compute Module

    Pine64 SOPINE Compute Module

    Back to using Allwinner SoCs. In order to make this thing useful, you need to place it in something. It’s possible to get a mini-ITX form factor board that can accommodate 7 of these modules. Before going to that extreme, there is this much simpler baseboard which can also use eMMC for storage.

    Baseboard with SOPINE, eMMC, and heat sinks

    Baseboard with SOPINE, eMMC, and heat sinks

    I really need to find an appropriate case for this one as it currently performs its duty while sitting on an anti-static bag.

    NanoPi NEO3
    I enjoy running the DietPi distribution on many of these SBCs (as it’s developed not just for Raspberry Pi). I have also found their website to be a useful resource for discovering new SBCs. That’s how I found the NanoPi series and zeroed in on this NEO3 unit, sporting a Rockchip SoC, and photographed here with some American currency in order to illustrate its relative size :

    NanoPi NEO3

    NanoPi NEO3

    I often forget about this computer because it’s off in another room, just quietly performing its assigned duty.

    MangoPi MQ-Pro
    So far, I’ve heard of these fruits prepending the Greek letter pi for naming small computing products :

    • Raspberry – the O.G.
    • Banana – seems to be popular for hobbyist router/switches
    • Orange
    • Atomic
    • Nano
    • Mango

    Okay, so the AtomicPi and NanoPi names don’t really make sense considering the fruit convention.

    Anyway, the newest entry is the MangoPi. These showed up on Ameridroid a few months ago. There are 2 variants : the MQ-Pro and the MQ-Quad. I picked one and rolled with it.

    MangoPi MQ-Pro pieces arrive

    MangoPi MQ-Pro pieces arrive

    When it arrived, I unpacked it, assembled the pieces, downloaded a distro, tossed that on a micro-SD card, connected a monitor and keyboard to it via its USB-C port, got the distro up and running, configured the wireless networking with a static IP address and installed sshd, and it was ready to go as a headless server for an edge application.

    MangoPi MQ-Pro components, ready for assembly

    MangoPi MQ-Pro components, ready for assembly

    The unit came with no instructions that I can recall. After I got it set up, I remember thinking, “What is wrong with me ? Why is it that I just know how to do all of this without any documentation ?”

    MangoPi MQ-Pro in first test

    MangoPi MQ-Pro in first test

    Only after I got it up and running and poked around a bit did I realize that this SBC doesn’t have an ARM SoC– it’s a RISC-V SoC. It uses the Allwinner D1, so it looks like I came full circle back to Allwinner.

    MangoPi MQ-Pro with more US coinage for scale

    MangoPi MQ-Pro with more US coinage for scale

    So I now have my first piece of RISC-V hobbyist kit, although I learned recently from Kostya that it’s not that great for multimedia.

    Handheld Gaming Units
    The folks at Hardkernel have also produced a series of handheld retro-gaming devices called ODROID-GO. The first one resembled the original Nintendo Game Boy, came as a kit to be assembled, and emulated 5 classic consoles. It also had some hackability to it. Quite a cool little device, and inexpensive too. I have since passed it along to another gaming enthusiast.

    Later came the ODROID-GO Advance, also a kit, but emulating more devices. I was extremely eager to get my hands on this since it could emulate SNES in addition to NES. It also features a headphone jack, unlike the earlier model. True to form, after I received mine, it took me about 13 months before I got around to assembling it. After that, the biggest challenge I had was trying to find an appropriate case for it.

    ODROID-GO Advance with case and headphones

    ODROID-GO Advance with case and headphones

    Even though it may try to copy the general aesthetic and form factor of the Game Boy Advance, cases for the GBA don’t fit this correctly.

    Further, Hardkernel have also released the ODROID-GO Super and Ultra models that do more and more. The Advance, Super, and Ultra models have powerful SoCs and feature much more hackability than the first ODROID-GO model.

    I know that the guts of the Advance have been used in other products as well. The same is likely true for the Super and Ultra.

    Ultimately, the ODROID-GO Advance was just another project I assembled and then set aside since I like the idea of playing old games much more than actually doing it. Plus, the fact has finally crystalized in my mind over the past few years that I have never enjoyed handheld gaming and likely will never enjoy handheld gaming, even after I started wearing glasses. Not that I’m averse to old Game Boy / Color / Advance games, but if I’m going to play them, I’d rather emulate them on a large display.

    The Future
    In some of my weaker moments, I consider ordering up certain Banana Pi products (like the Banana Pi BPI-R2) with a case and doing my own router tricks using some open source router/firewall solution. And then I remind myself that my existing prosumer-type home router is doing just fine. But maybe one day…

    The post My SBC Collection first appeared on Breaking Eggs And Making Omelettes.

  • How to convert a .avif images to video with ffmpeg ?

    18 mars 2023, par tousang

    convert a .avif images to video with ffmpeg

    


    by read ffmpeg doc, i run such cmd in shell :

    


    ffmpeg -framerate 10 -pattern_type glob -i *.avif -c:v libx264 -pix_fmt yuv420p out.mp4


    


    but only get some error :

    


    ffmpeg version N-109896-g156ca86569 Copyright (c) 2000-2023 the FFmpeg developers
  built with Apple clang version 14.0.0 (clang-1400.0.29.202)
  configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/HEAD-156ca86_1 --enable-shared --cc=clang --host-cflags= --host-ldflags= --enable-gpl --enable-libaom --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-libsnappy --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libx265 --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-demuxer=dash --enable-opencl --enable-audiotoolbox --enable-videotoolbox --enable-neon --disable-htmlpages --enable-libfdk-aac --enable-libsvtav1 --enable-nonfree
  libavutil      58.  3.100 / 58.  3.100
  libavcodec     60.  4.100 / 60.  4.100
  libavformat    60.  4.100 / 60.  4.100
  libavdevice    60.  2.100 / 60.  2.100
  libavfilter     9.  4.100 /  9.  4.100
  libswscale      7.  2.100 /  7.  2.100
  libswresample   4. 11.100 /  4. 11.100
  libpostproc    57.  2.100 / 57.  2.100
Option framerate not found.


    


    my ffmpeg can convert png image to avif , i wonder if there have some ways to convert avif image to mp4 video.

    


    thanks.

    


  • Introducing Crash Analytics for Matomo

    30 août 2023, par Erin — Community, Plugins

    Bugs and development go hand in hand. As code matures, it contends with new browser iterations, clashes with ad blockers and other software quirks, resulting in the inevitable emergence of bugs. In fact, a staggering 13% of all pageviews come with lurking JavaScript errors.

    Monitoring for crashes becomes an unrelenting task. Amidst this never-ending effort to remove bugs, a SurveyMonkey study unveils a shared reality : a resounding 66% of individuals have encountered bug-ridden websites.

    These bugs lead to problems like malfunctioning shopping carts, glitchy checkout procedures and contact forms that just won’t cooperate. But they’re not just minor annoyances – they pose a real danger to your conversion rates and revenue.

    According to a study, 58% of visitors are inclined to abandon purchases as a result of bugs, while an astonishing 75% are driven to completely abandon websites due to these frustrating experiences.

    Imagine a website earning approximately 25,000 EUR per month. Now, factor in errors occurring in 13% of all pageviews. The result ? A potential monthly loss of 1,885 EUR.

    Meet Crash Analytics

    Driven by our vision to create an empowering analytics product, we’re excited to introduce Crash Analytics, an innovative plugin for Matomo On-Premise that automatically tracks bugs on your website.

    Crash Analytics for Matomo Evolution Graph
    View crash reports by evolution over time

    By offering insights into the precise bug location and the user’s interactions that triggered it, along with details about their device type, browser and more, Crash Analytics empowers you to swiftly address crashes, leading to an improved user experience, higher conversion rates and revenue growth.

    Soon, Crash Analytics will become available to Matomo Cloud users as well, so stay tuned for further updates and announcements.

    Say goodbye to lost revenue – never miss a bug again

    Even if you put your website through the toughest tests, it’s hard to predict every little hiccup that can pop up across different browsers, setups and situations. Factors such as ad blockers, varying internet speeds for visitors and browser updates can add an extra layer of complexity.

    When these crashes happen, you want to know immediately. However, according to a study, only 29% of surveyed respondents would report the existence of the site bug to the website operator. These bugs that go unnoticed can really hurt your bottom line and conversion rates, causing you to lose out on revenue and leaving your users frustrated and disappointed.

    Crash detail report in Crash Analytics for Matomo
    Detailed crash report

    Crash Analytics is here to bridge this gap. Armed with scheduled reporting (via email or texts) and automated alert functionalities, you gain the power to instantly detect bugs as they occur on your site. This proactive approach ensures that even the subtlest of issues are brought to your attention promptly. 

    With automated reports and alerts, you can also opt to receive notifications when crashes increase or ignore specific crashes that you deem insignificant. This keeps you in the loop with only the issues that truly matter, helping you cut out the noise and take immediate action.

    Forward crash data

    Easily forward crash data to developers and synchronise the efforts of technical teams and marketing experts. Track emerging, disappearing and recurring errors, ensuring that crash data is efficiently relayed to developers to prioritise fixes that matter.

    Eemerging, disappearing and recurring crashes in Crash Analytics for Matomo
    Track emerging, disappearing and recurring bugs

    Plus, your finger is always on the pulse with real-time reports that offer a live view of crashes happening at the moment, an especially helpful feature after deploying changes. Use annotations to mark deploys and correlate them with crash data, enabling you to quickly identify if a new bug is linked to recent updates or modifications.

    Crash data in real time
    Crash data in real time

    And with our mobile app, you can effortlessly stay connected to your website’s performance, conveniently accessing crash information anytime and anywhere. This ensures you’re in complete control of your site’s health, even when you’re on the move.

    Streamline bug resolution with combined web and crash analytics

    Crash Analytics for Matomo doesn’t just stop at pinpointing bug locations ; it goes a step further by providing you with a holistic perspective of user interactions. Seamlessly combining Matomo’s traditional and behavioural web analytics features—like segments, session recordings and visitor logs—with crash data, this integrated approach unveils a wealth of insights so you can quickly resolve bugs. 

    For instance, let’s say a user encounters a bug while attempting to complete a purchase on your e-commerce website. Crash Analytics reveals the exact point of failure, but to truly grasp the situation, you delve into the session recordings. These recordings offer a front-row seat to the user’s journey—every click and interaction that led to the bug. Session recordings are especially helpful when you are struggling to reproduce an issue.

    Visits log combined with crash data in Matomo
    Visits log overlayed with crash data

    Additionally, the combination of visitor logs with crash data offers a comprehensive timeline of a user’s engagement. This helps you understand their activity leading up to the bug, such as pages visited, actions taken and devices used. Armed with these multifaceted insights, you can confidently pinpoint the root causes and address the crash immediately.

    With segments, you have the ability to dissect the data and compare experiences among distinct user groups. For example, you can compare mobile visitors to desktop visitors to determine if the issue is isolated or widespread and what impact the issue is having on the user experience of different user groups. 

    The combination of crash data with Matomo’s comprehensive web analytics equips you with the tools needed to elevate user experiences and ultimately drive revenue growth.

    Start in seconds, shape as needed : Your path to a 100% reliable website

    Crash Analytics makes the path to a reliable website simple. You don’t have to deal with intricate setups—crash detection starts without any configuration. 

    Plus, Crash Analytics excels in cross-stack proficiency, seamlessly extending its capabilities beyond automatically tracking JavaScript errors to covering server-side crashes as well, whether they occur in PHP, Android, iOS, Java or other frameworks. This versatile approach ensures that Crash Analytics comprehensively supports your website’s health and performance across various technological landscapes.

    Elevate your website with Crash Analytics

    Experience the seamless convergence of bug tracking and web analytics, allowing you to delve into user interactions, session recordings and visitor logs. With the flexibility of customising real-time alerts and scheduled reports, alongside cross-stack proficiency, Crash Analytics becomes your trusted ally in enhancing your website’s reliability and user satisfaction to increase conversions and drive revenue growth. Equip yourself to swiftly address issues and create a website where user experiences take precedence.

    Start your 30-day free trial of our Crash Analytics plugin today, and stay tuned for its availability on Matomo Cloud.