Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (58)

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

Sur d’autres sites (8778)

  • Given an x264 stream and an ogg vorbis stream, how do I make a muxed stream that mplayer/VLC can read ?

    14 avril 2012, par dascandy

    I'm confused and a bit stuck with this question. All I can find on Google is basic usage of transcoding software, which is not related to the question.

    I'm making a game and I'd like to include native capture ability to stream video. I would much like to stream this to a standard-ish client, such as VLC. It needs to be both in a format it recognizes and it needs to be multiplexed in order for this to work.

    My question therefore is, I know how to encode stuff from raw video frames to x264 (see also How to encode series of images into H264 using x264 API ? (C/C++) ). I know how to encode raw audio samples into ogg/vorbis. Now, how do I put one and one together for VLC ?

  • Revisiting Nosefart and Discovering GME

    30 mai 2011, par Multimedia Mike — Game Hacking

    I found the following screenshot buried deep in an old directory structure of mine :



    I tried to recall how this screenshot came to exist. Had I actually created a functional KDE frontend to Nosefart yet neglected to release it ? I think it’s more likely that I used some designer tool (possibly KDevelop) to prototype a frontend. This would have been sometime in 2000.

    However, this screenshot prompted me to revisit Nosefart.

    Nosefart Background
    Nosefart is a program that can play Nintendo Sound Format (NSF) files. NSF files are files containing components that were surgically separated from Nintendo Entertainment System (NES) ROM dumps. These components contain the music playback engines for various games. An NSF player is a stripped down emulation system that can simulate the NES6502 CPU along with the custom hardware (2 square waves, 1 triangle wave, 1 noise generator, and 1 limited digital channel).

    Nosefart was written by Matt Conte and eventually imported into a Sourceforge project, though it has not seen any development since then. The distribution contains standalone command line players for Linux and DOS, a GTK frontend for the Linux command line version, and plugins for Winamp, XMMS, and CL-Amp.

    The Sourceforge project page notes that Nosefart is also part of XBMC. Let the record show that Nosefart is also incorporated into xine (I did that in 2002, I think).

    Upgrading the API
    When I tried running the command line version of Nosefart under Linux, I hit hard against the legacy audio API : OSS. Remember that ?

    In fairly short order, I was able to upgrade the CL program to use PulseAudio. The program is not especially sophisticated. It’s a single-threaded affair which checks for a keypress, processes an audio frame, and sends the frame out to the OSS file interface. All that was needed was to rewrite open_hardware() and close_hardware() for PA and then replace the write statement in play(). The only quirk that stood out is that including <pulse/pulseaudio.h> is insufficient for programming PA’s simple API. <pulse/simple.h> must be included separately.

    For extra credit, I adapted the program to ALSA. The program uses the most simplistic audio output API possible — just keep filling a buffer and sending it out to the DAC.

    Discovering GME
    I’m not sure what to do with the the program now since, during my research to attempt to bring Nosefart up to date, I became aware of a software library named Game Music Emu, or GME. It’s a pure C++ library that can essentially play any classic video game format you can possible name. Wow. A lot can happen in 10 years when you’re not paying attention.

    It’s such a well-written library that I didn’t need any tutorial or documentation to come up to speed. Just a quick read of the main gme.h header library enabled me in short order to whip up a quick C program that could play NSF and SPC files. Path of least resistance : Client program asks library to open a hardcoded file, synthesize 10 seconds of audio, and dump it into a file ; ask the FLAC command line program to transcode raw data to .flac file ; use ffplay to verify the results.

    I might develop some other uses for this library.

  • Metal Gear Solid VP3 Easter Egg

    4 août 2011, par Multimedia Mike — Game Hacking

    Metal Gear Solid : The Twin Snakes for the Nintendo GameCube is very heavy on the cutscenes. Most of them are animated in real-time but there are a bunch of clips — normally of a more photo-realistic nature — that the developers needed to compress using a conventional video codec. What did they decide to use for this task ? On2 VP3 (forerunner of Theora) in a custom transport format. This is only the second game I have seen in the wild that uses pure On2 VP3 (first was a horse game). Reimar and I sorted out most of the details sometime ago. I sat down today and wrote a FFmpeg / Libav demuxer for the format, mostly to prove to myself that I still could.

    Things went pretty smoothly. We suspected that there was an integer field that indicated the frame rate, but 18 fps is a bit strange. I kept fixating on a header field that read 0x41F00000. Where have I seen that number before ? Oh, of course — it’s the number 30.0 expressed as an IEEE 32-bit float. The 4XM format pulled the same trick.

    Hexadecimal Easter Egg
    I know I finished the game years ago but I really can’t recall any of the clips present in the samples directory. The file mgs1-60.vp3 contains a computer screen granting the player access and illustrates this with a hexdump. It looks something like this :



    Funny, there are only 22 bytes on a line when there should be 32 according to the offsets. But, leave it to me to try to figure out what the file type is, regardless. I squinted and copied the first 22 bytes into a file :

     1F 8B 08 00   85 E2 17 38   00 03 EC 3A   0D 78 54 D5
     38 00 03 EC   3A 0D
    

    And the answer to the big question :

    $ file mgsfile
    mgsfile : gzip compressed data, from Unix, last modified : Wed Oct 27 22:43:33 1999
    

    A gzip’d file from 1999. I don’t know why I find this stuff so interesting, but I do. I guess it’s no more and less strange than writing playback systems like this.