
Recherche avancée
Médias (1)
-
Video d’abeille en portrait
14 mai 2011, par
Mis à jour : Février 2012
Langue : français
Type : Video
Autres articles (79)
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Mise à jour de la version 0.1 vers 0.2
24 juin 2013, parExplications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...) -
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)
Sur d’autres sites (10222)
-
Adobe launches preview of Story
10 septembre 2009Adobe is getting into the script management business with Story, and they’ve launched a free preview to show it off.
It’s an interesting space for Adobe to enter, and it’ll be interesting to see how it stacks up against tools like Celtx.
-
Inside WebM Technology : VP8 Intra and Inter Prediction
20 juillet 2010, par noreply@blogger.com (Lou Quillio)Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.
Image by Fido Factor, licensed under Creative Commons Attribution License.
Based on a work at www.flickr.comA VP8 encoder uses two classes of prediction :- Intra prediction uses data within a single video frame
- Inter prediction uses data from previously encoded frames
The residual signal data is then encoded using other techniques, such as transform coding.VP8 Intra Prediction ModesVP8 intra prediction modes are used with three types of macroblocks :- 4x4 luma
- 16x16 luma
- 8x8 chroma
Four common intra prediction modes are shared by these macroblocks :- H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
- V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
- DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
- TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :Xij = Li + Aj - C (i, j=0, 1, 2, 3)Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).VP8 Inter Prediction ModesIn VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.Yaowu Xu, Ph.D. is a codec engineer at Google. -
Revisiting the Belco Alpha-400
26 août 2010, par Multimedia Mike — GeneralRelieved of the primary FATE maintenance duties, I decided to dust off my MIPS-based Belco Alpha-400 and try to get it doing FATE cycles. And just as I was about to get FATE running, I saw that Mans already got his MIPS-based Popcorn Hour device to run FATE. But here are my notes anyway.
Getting A Prompt
For my own benefit, I made a PDF to remind me precisely how to get a root prompt on the Alpha-400. The ‘jailbreak’ expression seems a little juvenile to me, but it seems to be in vogue right now.Toolchain
When I last tinkered with the Alpha-400, I was trying to build a toolchain that could build binaries to run on the unit’s MIPS chip, to no avail. Sometime last year, MichaelK put together x86_32-hosted toolchains that are able to build mipsel 32-bit binaries for Linux 2.4 and 2.6. The Alpha-400 uses a 2.4 kernel and the corresponding toolchain works famously for building current FFmpeg (--disable-devices
is necessary for building).FATE Samples
Next problem : Making the FATE suite available to the Alpha-400. I copied all of the FATE suite samples onto a VFAT-formatted SD card. The filename case is not preserved for all files which confounds me since it is preserved in other cases. I tried formatting the card for ext3 but the Alpha-400 would not mount it, even though /proc/filesystems lists ext3 (supporting an older version of ext3 ?).Alternative : Copy all of the FATE samples to the device’s rootfs. Space will be a little tight, though. Then again, there is over 600 MB of space free ; I misread earlier and thought there were only 300 MB free.
Remote Execution
To perform FATE cycles on a remote device, it helps to be able to SSH into that remote device. I don’t even want to know how complicated it would be to build OpenSSH for the device. However, the last time I brought up this topic, I learned about a lighter weight SSH replacement called Dropbear. It turns out that Dropbear runs great on this MIPS computer.Running FATE Remotely
I thought all the pieces would be in place to run FATE at this point. However, there is one more issue : Running FATE on a remote system requires that the host and the target are sharing a filesystem somehow. My personal favorite remote filesystem method is sshfs which is supposed to work wherever there is an SSH server. That’s not entirely true, though– sshfs also requires sftp-server to be installed on the server side, a program that Dropbear does not currently provide.I’m not even going to think about getting Samba or NFS server software installed on the Alpha-400. According to the unit’s /proc/filesystems file, nfs is a supported filesystem. I hate setting up NFS but may see if I can get that working anyway.
Residual Weirdness
The unit comes with the venerable Busybox program (BusyBox v1.4.1 (2007-06-01 20:37:18 CST) multi-call binary
) for most of its standard command line utilities. I noticed a quirk where BusyBox’s md5sum gives weird hex characters. This might be a known/fixed issue.Another item is that the Alpha-400′s /dev/null file only has rwxr-xr-x per default. This caused trouble when I first tried to scp using Dropbear using a newly-created, unprivileged user.