
Recherche avancée
Médias (91)
-
999,999
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
-
Demon seed (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
The four of us are dying (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Corona radiata (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Lights in the sky (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (58)
-
Des sites réalisés avec MediaSPIP
2 mai 2011, parCette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page. -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (8116)
-
pyqt5 gui dependent on ffmpeg compiled with pyinstaller doesn't run on other machines ?
19 octobre 2022, par SorenI am trying to create a simple Pyqt5 GUI for Windows 10 that uses OpenAI's model Whisper to transcribe a sound file and outputting the results in an Excel-file. It works on my own computer where I have installed the necessary dependencies for Whisper as stated on their github i.e. FFMEG. I provide a minimal example of my code below :


# Import library
import whisper
import os
from PyQt5 import QtCore, QtGui, QtWidgets
import pandas as pd
import xlsxwriter


class Ui_Dialog(QtWidgets.QDialog):
 
 
 # Define functions to use in GUI
 
 # Define function for selecting input files
 def browsefiles(self, Dialog):
 
 
 # Make Dialog box and save files into tuple of paths
 files = QtWidgets.QFileDialog().getOpenFileNames(self, "Select soundfiles", os.getcwd(), "lyd(*mp2 *.mp3 *.mp4 *.m4a *wma *wav)")
 
 self.liste = []
 for url in range(len(files[0])):
 self.liste.append(files[0][url]) 

 
 def model_load(self, Dialog):
 
 # Load picked model
 self.model = whisper.load_model(r'C:\Users\Søren\Downloads\Whisper_gui\models' + "\\" + self.combo_modelSize.currentText() + ".pt") ##the path is set to where the models are on the other machine
 
 
 def run(self, Dialog):
 
 # Make list for sound files
 liste_df = []
 
 
 # Running loop for interpreting and encoding sound files
 for url in range(len(self.liste)):
 
 # Make dataframe
 df = pd.DataFrame(columns=["filename", "start", "end", "text"])
 
 # Run model
 result = self.model.transcribe(self.liste[url])
 
 # Extract results
 for i in range(len(result["segments"])):
 start = result["segments"][i]["start"]
 end = result["segments"][i]["end"]
 text = result["segments"][i]["text"]
 
 df = df.append({"filename": self.liste[url].split("/")[-1],
 "start": start, 
 "end": end, 
 "text": text}, ignore_index=True)
 
 # Add detected language to dataframe
 df["sprog"] = result["language"]
 
 
 liste_df.append(df)
 
 
 
 # Make excel output
 
 # Concatenate list of dfs
 dataframe = pd.concat(liste_df)
 
 
 # Create a Pandas Excel writer using XlsxWriter as the engine.
 writer = pd.ExcelWriter(self.liste[0].split(".")[0] + '_OUTPUT.xlsx', engine='xlsxwriter')
 writer_wrap_format = writer.book.add_format({"text_wrap": True, 'num_format': '@'})


 # Write the dataframe data to XlsxWriter. Turn off the default header and
 # index and skip one row to allow us to insert a user defined header.
 dataframe.to_excel(writer, sheet_name="Output", startrow=1, header=False, index=False)

 # Get the xlsxwriter workbook and worksheet objects.
 #workbook = writer.book
 worksheet = writer.sheets["Output"]

 # Get the dimensions of the dataframe.
 (max_row, max_col) = dataframe.shape

 # Create a list of column headers, to use in add_table().
 column_settings = [{'header': column} for column in dataframe.columns]

 # Add the Excel table structure. Pandas will add the data.
 worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': column_settings})

 # Make the columns wider for clarity.
 worksheet.set_column(0, max_col - 1, 12)
 
 in_col_no = xlsxwriter.utility.xl_col_to_name(dataframe.columns.get_loc("text"))
 
 worksheet.set_column(in_col_no + ":" + in_col_no, 30, writer_wrap_format)

 # Close the Pandas Excel writer and output the Excel file.
 writer.save()
 writer.close()
 
 
 ## Design setup
 
 def setupUi(self, Dialog):
 Dialog.setObjectName("Dialog")
 Dialog.resize(730, 400)
 
 self.select_files = QtWidgets.QPushButton(Dialog)
 self.select_files.setGeometry(QtCore.QRect(40, 62, 81, 31))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.select_files.setFont(font)
 self.select_files.setObjectName("select_files")
 
 
 
 
 self.combo_modelSize = QtWidgets.QComboBox(Dialog)
 self.combo_modelSize.setGeometry(QtCore.QRect(40, 131, 100, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.combo_modelSize.setFont(font)
 self.combo_modelSize.setObjectName("combo_modelSize")
 
 
 self.runButton = QtWidgets.QPushButton(Dialog)
 self.runButton.setGeometry(QtCore.QRect(40, 289, 71, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.runButton.setFont(font)
 self.runButton.setObjectName("runButton")
 
 
 

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)
 
 
 
 modelSize_options = ['Chose model', 'tiny', 'base', 'small', 'medium', 'large']
 self.combo_modelSize.addItems(modelSize_options)
 
 # Do an action!
 self.select_files.clicked.connect(self.browsefiles)
 self.combo_modelSize.currentIndexChanged.connect(self.model_load)
 self.runButton.clicked.connect(self.run)
 
 
 
 

 def retranslateUi(self, Dialog):
 _translate = QtCore.QCoreApplication.translate
 Dialog.setWindowTitle(_translate("Dialog", "Dialog"))
 self.runButton.setText(_translate("Dialog", "Go!"))
 self.select_files.setText(_translate("Dialog", "Select"))


if __name__ == "__main__":
 import sys
 app = QtWidgets.QApplication(sys.argv)
 Dialog = QtWidgets.QDialog()
 ui = Ui_Dialog()
 ui.setupUi(Dialog)
 Dialog.show()
 sys.exit(app.exec_())



I compile this app with pyinstaller using the following code. I had some issues to begin with so I found other with similar problems and ended up with this :


pyinstaller --onedir --hidden-import=pytorch --collect-data torch --copy-metadata torch --copy-metadata tqdm --copy-metadata tokenizers --copy-metadata importlib_metadata --hidden-import="sklearn.utils._cython_blas" --hidden-import="sklearn.neighbors.typedefs" --hidden-import="sklearn.neighbors.quad_tree" --hidden-import="sklearn.tree" --hidden-import="sklearn.tree._utils" --copy-metadata regex --copy-metadata requests --copy-metadata packaging --copy-metadata filelock --copy-metadata numpy --add-data "./ffmpeg/*;./ffmpeg/" --hidden-import=whisper --copy-metadata whisper --collect-data whisper minimal_example_whisper.py


When I take the outputtet dist directory and try to run the app on another Windows machine without FFMPEG installed (or Whisper or any other things), I get the following error from the terminal as I push the "run" button in the app (otherwise the app does run).


C:\Users\Søren>"G:\minimal_example_whisper\minimal_example_whisper.exe"
whisper\transcribe.py:70: UserWarning: FP16 is not supported on CPU; using FP32 instead
Traceback (most recent call last):
 File "minimal_example_whisper.py", line 45, in run
 File "whisper\transcribe.py", line 76, in transcribe
 File "whisper\audio.py", line 111, in log_mel_spectrogram
 File "whisper\audio.py", line 42, in load_audio
 File "ffmpeg\_run.py", line 313, in run
 File "ffmpeg\_run.py", line 284, in run_async
 File "subprocess.py", line 951, in __init__
 File "subprocess.py", line 1420, in _execute_child
FileNotFoundError: [WinError 2] Den angivne fil blev ikke fundet



I suspect this has something to do with FFMPEG not being installed on the other machines system ? Does anyone have an automatic solution for this when compiling the app or can it simply only run on machines that has FFMPEG installed ?


Thanks in advance !


-
Revision 33460 : suite a discussion sur spip-dev, mettre le logo et le titre de l’article ...
2 décembre 2009, par cedric@… — Logsuite a discussion sur spip-dev, mettre le logo et le titre de l’article dans le meme pour fluidifier la lecture des revues d’ecran
-
Revision 33677 : une structure commune avec le plugin commentaires, mais : - qui n’est pas ...
11 décembre 2009, par cedric@… — Logune structure commune avec le plugin commentaires, mais : - qui n’est pas encore stabilisee, dixit son auteure - qui garde aussi le nommage original de la dist pour des raisons de compatibilite dans le but de permettre la transition la suite reprendra apres la finalisation des travaux de (...)