Recherche avancée

Médias (91)

Autres articles (74)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (7857)

  • What Is Data Misuse & How to Prevent It ? (With Examples)

    13 mai 2024, par Erin

    Your data is everywhere. Every time you sign up for an email list, log in to Facebook or download a free app onto your smartphone, your data is being taken.

    This can scare customers and users who fear their data will be misused.

    While data can be a powerful asset for your business, it’s important you manage it well, or you could be in over your head.

    In this guide, we break down what data misuse is, what the different types are, some examples of major data misuse and how you can prevent it so you can grow your brand sustainably.

    What is data misuse ?

    Data is a good thing.

    It helps analysts and marketers understand their customers better so they can serve them relevant information, products and services to improve their lives.

    But it can quickly become a bad thing for both the customers and business owners when it’s mishandled and misused.

    What is data misuse?

    Data misuse is when a business uses data outside of the agreed-upon terms. When companies collect data, they need to legally communicate how that data is being used. 

    Who or what determines when data is being misused ?

    Several bodies :

    • User agreements
    • Data privacy laws
    • Corporate policies
    • Industry regulations

    There are certain laws and regulations around how you can collect and use data. Failure to comply with these guidelines and rules can result in several consequences, including legal action.

    Keep reading to discover the different types of data misuse and how to prevent it.

    3 types of data misuse

    There are a few different types of data misuse.

    If you fail to understand them, you could face penalties, legal trouble and a poor brand reputation.

    3 types of data misuse.

    1. Commingling

    When you collect data, you need to ensure you’re using it for the right purpose. Commingling is when an organisation collects data from a specific audience for a specific reason but then uses the data for another purpose.

    One example of commingling is if a company shares sensitive customer data with another company. In many cases, sister companies will share data even if the terms of the data collection didn’t include that clause.

    Another example is if someone collects data for academic purposes like research but then uses the data later on for marketing purposes to drive business growth in a for-profit company.

    In either case, the company went wrong by not being clear on what the data would be used for. You must communicate with your audience exactly how the data will be used.

    2. Personal benefit

    The second common way data is misused in the workplace is through “personal benefit.” This is when someone with access to data abuses it for their own gain.

    The most common example of personal benefit data muse is when an employee misuses internal data.

    While this may sound like each instance of data misuse is caused by malicious intent, that’s not always the case. Data misuse can still exist even if an employee didn’t have any harmful intent behind their actions. 

    One of the most common examples is when an employee mistakenly moves data from a company device to personal devices for easier access.

    3. Ambiguity

    As mentioned above, when discussing commingling, a company must only use data how they say they will use it when they collect it.

    A company can misuse data when they’re unclear on how the data is used. Ambiguity is when a company fails to disclose how user data is being collected and used.

    This means communicating poorly on how the data will be used can be wrong and lead to misuse.

    One of the most common ways this happens is when a company doesn’t know how to use the data, so they can’t give a specific reason. However, this is still considered misuse, as companies need to disclose exactly how they will use the data they collect from their customers.

    Laws on data misuse you need to follow

    Data misuse can lead to poor reputations and penalties from big tech companies. For example, if you step outside social media platforms’ guidelines, you could be suspended, banned or shadowbanned.

    But what’s even more important is certain types of data misuse could mean you’re breaking laws worldwide. Here are some laws on data misuse you need to follow to avoid legal trouble :

    General Data Protection Regulation (GDPR)

    The GDPR, or General Data Protection Regulation, is a law within the European Union (EU) that went into effect in 2018.

    The GDPR was implemented to set a standard and improve data protection in Europe. It was also established to increase accountability and transparency for data breaches within businesses and organisations.

    The purpose of the GDPR is to protect residents within the European Union.

    The penalties for breaking GDPR laws are fines up to 20 million Euros or 4% of global revenues (whatever the higher amount is).

    The GDPR doesn’t just affect companies in Europe. You can break the GDPR’s laws regardless of where your organisation is located worldwide. As long as your company collects, processes or uses the personal data of any EU resident, you’re subject to the GDPR’s rules.

    If you want to track user data to grow your business, you need to ensure you’re following international data laws. Tools like Matomo—the world’s leading privacy-friendly web analytics solution—can help you achieve GDPR compliance and maintain it.

    With Matomo, you can confidently enhance your website’s performance, knowing that you’re adhering to data protection laws. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    California Consumer Privacy Act (CCPA)

    The California Consumer Privacy Act (CCPA) is another important data law companies worldwide must follow.

    Like GDPR, the CCPA is a data privacy law established to protect residents of a certain region — in this case, residents of California in the United States.

    The CCPA was implemented in 2020, and businesses worldwide can be penalised for breaking the regulations. For example, if you’re found violating the CCPA, you could be fined $7,500 for each intentional violation.

    If you have unintentional violations, you could still be fined, but at a lesser fee of $2,500.

    The Gramm-Leach-Bliley Act (GLBA)

    If your business is located within the United States, then you’re subject to a federal law implemented in 1999 called The Gramm-Leach-Bliley Act (GLB Act or GLBA).

    The GLBA is also known as the Financial Modernization Act of 1999. Its purpose is to control the way American financial institutions handle consumer data. 

    In the GLBA, there are three sections :

    1. The Financial Privacy Rule : regulates the collection and disclosure of private financial data.
    2. Safeguards Rule : Financial institutions must establish security programs to protect financial data.
    3. Pretexting Provisions : Prohibits accessing private data using false pretences.

    The GLBA also requires financial institutions in the U.S. to give their customers written privacy policy communications that explain their data-sharing practices.

    4 examples of data misuse in real life

    If you want to see what data misuse looks like in real life, look no further.

    Big tech is central to some of the biggest data misuses and scandals.

    4 examples of data misuse in real life.

    Here are a few examples of data misuse in real life you should take note of to avoid a similar scenario :

    1. Facebook election interference

    One of history’s most famous examples of data misuse is the Facebook and Cambridge Analytica scandal in 2018.

    During the 2018 U.S. midterm elections, Cambridge Analytica, a political consulting firm, acquired personal data from Facebook users that was said to have been collected for academic research.

    Instead, Cambridge Analytica used data from roughly 87 million Facebook users. 

    This is a prime example of commingling.

    The result ? Cambridge Analytica was left bankrupt and dissolved, and Facebook was fined $5 billion by the Federal Trade Commission (FTC).

    2. Uber “God View” tracking

    Another big tech company, Uber, was caught misusing data a decade ago. 

    Why ?

    Uber implemented a new feature for its employees in 2014 called “God View.”

    The tool enabled Uber employees to track riders using their app. The problem was that they were watching them without the users’ permission. “God View” lets Uber spy on their riders to see their movements and locations.

    The FTC ended up slapping them with a major lawsuit, and as part of their settlement agreement, Uber agreed to have an outside firm audit their privacy practices between 2014 and 2034.

    Uber "God View."

    3. Twitter targeted ads overstep

    In 2019, Twitter was found guilty of allowing advertisers to access its users’ personal data to improve advertisement targeting.

    Advertisers were given access to user email addresses and phone numbers without explicit permission from the users. The result was that Twitter ad buyers could use this contact information to cross-reference with Twitter’s data to serve ads to them.

    Twitter stated that the data leak was an internal error. 

    4. Google location tracking

    In 2020, Google was found guilty of not explicitly disclosing how it’s using its users’ personal data, which is an example of ambiguity.

    The result ?

    The French data protection authority fined Google $57 million.

    8 ways to prevent data misuse in your company

    Now that you know the dangers of data misuse and its associated penalties, it’s time to understand how you can prevent it in your company.

    How to prevent data misuse in your company.

    Here are eight ways you can prevent data misuse :

    1. Track data with an ethical web analytics solution

    You can’t get by in today’s business world without tracking data. The question is whether you’re tracking it safely or not.

    If you want to ensure you aren’t getting into legal trouble with data misuse, then you need to use an ethical web analytics solution like Matomo.

    With it, you can track and improve your website performance while remaining GDPR-compliant and respecting user privacy. Unlike other web analytics solutions that monetise your data and auction it off to advertisers, with Matomo, you own your data.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    2. Don’t share data with big tech

    As the data misuse examples above show, big tech companies often violate data privacy laws.

    And while most of these companies, like Google, appear to be convenient, they’re often inconvenient (and much worse), especially regarding data leaks, privacy breaches and the sale of your data to advertisers.

    Have you ever heard the phrase : “You are the product ?” When it comes to big tech, chances are if you’re getting it for free, you (and your data) are the products they’re selling.

    The best way to stop sharing data with big tech is to stop using platforms like Google. For more ideas on different Google product alternatives, check out this list of Google alternatives.

    3. Identity verification 

    Data misuse typically isn’t a company-wide ploy. Often, it’s the lack of security structure and systems within your company. 

    An important place to start is to ensure proper identity verification for anyone with access to your data.

    4. Access management

    After establishing identity verification, you should ensure you have proper access management set up. For example, you should only give specific access to specific roles in your company to prevent data misuse.

    5. Activity logs and monitoring

    One way to track data misuse or breaches is by setting up activity logs to ensure you can see who is accessing certain types of data and when they’re accessing it.

    You should ensure you have a team dedicated to continuously monitoring these logs to catch anything quickly.

    6. Behaviour alerts 

    While manually monitoring data is important, it’s also good to set up automatic alerts if there is unusual activity around your data centres. You should set up behaviour alerts and notifications in case threats or compromising events occur.

    7. Onboarding, training, education

    One way to ensure quality data management is to keep your employees up to speed on data security. You should ensure data security is a part of your employee onboarding. Also, you should have regular training and education to keep people informed on protecting company and customer data.

    8. Create data protocols and processes 

    To ensure long-term data security, you should establish data protocols and processes. 

    To protect your user data, set up rules and systems within your organisation that people can reference and follow continuously to prevent data misuse.

    Leverage data ethically with Matomo

    Data is everything in business.

    But it’s not something to be taken lightly. Mishandling user data can break customer trust, lead to penalties from organisations and even create legal trouble and massive fines.

    You should only use privacy-first tools to ensure you’re handling data responsibly.

    Matomo is a privacy-friendly web analytics tool that collects, stores and tracks data across your website without breaking privacy laws.

    With over 1 million websites using Matomo, you can track and improve website performance with :

    • Accurate data (no data sampling)
    • Privacy-friendly and compliant with privacy regulations like GDPR, CCPA and more
    • Advanced features like heatmaps, session recordings, A/B testing and more

    Try Matomo free for 21-days. No credit card required.

  • Privacy-friendly analytics : The benefits of an ethical, GDPR-compliant platform

    13 juin, par Joe

    Your visitors shouldn’t feel like you’re spying on them — even if you’re just trying to improve the user experience or track your marketing efforts. 

    While many analytics platforms make customers feel that way thanks to intrusive cookie consent banners and highly personalised ads, there is a growing movement towards ethical, privacy-friendly analytics.

    In this article, you’ll learn what privacy-friendly analytics is, why it matters, what to look for in a solution and which of the leading providers is right for you. 

    What is privacy-friendly analytics ? 

    Privacy-friendly analytics is a form of website analytics that collects and analyses data in a way that respects the user’s privacy. It’s a type of ethical web analytics.

    Privacy-friendly platforms limit personal data collection and anonymise individual user data while being transparent about collection and tracking methods. They help companies adhere to data protection laws (like GDPR, CCPA, and HIPAA) and new privacy laws (like OCPA, FDBR, and TDPSA) without configuring custom settings. 

    Why use privacy-friendly analytics ? 

    Millions of businesses choose privacy-friendly analytics platforms like Matomo. Here are a few reasons why : 

    Build trust with customers

    Research shows that the vast majority of consumers don’t trust companies with their data, believing that they prioritise profits over data protection. 

    Privacy-friendly analytics can help businesses prove they aren’t out to profit from consumer data and regain customer trust. This can ultimately boost revenue. According to Cisco’s Data Privacy Benchmark Study, organisations gain $180 for every $100 spent on privacy. 

    Comply with privacy regulations

    Data privacy regulations, such as GDPR, protect consumer privacy and establish strict rules governing how businesses can collect and use personal data.

    The cost of non-compliance is high. Under GDPR, fines can be up to €20 million, or 4% of worldwide annual revenue.

    Thanks to features like data anonymisation and the default use of first-party cookies, privacy-friendly analytics platforms can support and strengthen compliance efforts. 

    In fact, the French Data Protection Authority (CNIL) approved Matomo as one of the only web analytics tools to collect data without tracking consent.

    Minimise the impact of a breach

    According to IBM’s Cost of a Data Breach report, the average cost of a data breach is nearly $4.5 million. The more personally identifiable information (PII) is involved, the higher the fines and penalties. 

    A privacy-friendly analytics tool can reduce the potential impact of a breach by minimising the amount of personal information you hold. 

    Is Google Analytics privacy-friendly ?

    Google may be the best-known analytics platform, but it’s not the best choice for businesses that want to collect data responsibly and ethically. 

    Here are just a few of Google Analytics’s privacy issues :

    • It uses analytics data to run its advertising business.
    • It may train large language models like Gemini with analytics data.
    • It requires a specific setup to be GDPR compliant that isn’t available out of the box.

    Google Analytics’s ongoing issues with privacy laws like GDPR also raise doubt. The French and Austrian Data Protection Authorities have banned Google Analytics in the past, and there is no guarantee they won’t do so again. 

    What to look for in privacy-friendly analytics ?

    Several privacy-friendly analytics tools are available. To find the right one for your brand, look for the following features.

    Data ownership

    Choose a provider that gives you as much control over your users’ data as possible. Ideally, this will be via an on-site solution where you store data on your servers. For cloud-based options, ensure your analytics provider can’t access, use or sell it.

    With 100% data ownership, you have the power to protect your users’ privacy. You know where your customer data is stored and what’s happening to it without external influence.

    Open source

    The only genuinely privacy-friendly software is open-source software. Open-source software means anyone can review the code to ensure it does what it promises — in this case, maximising privacy. 

    Matomo is an open-source software company. Our source code is on GitHub, where everyone can see precisely how our platform tracks and stores user data. A community of developers also regularly examines and reviews our code to further strengthen security. 

    Data anonymisation 

    Privacy-friendly analytics should allow marketers to completely anonymise the data they collect. They achieve this through several techniques like IP anonymisation and pseudonymised user IDs that modify or remove personally identifiable data so it can’t be linked to individuals.

    Data anonymisation settings Matomo

    Matomo’s data anonymisation settings 

    In Matomo, for example, you can anonymise the following things in the platform’s Privacy settings :

    • IP address
    • Location
    • User ID

    IP address anonymisation is enabled by default in Matomo.

    No data sampling 

    Data sampling involves extrapolating analytics reports from an incomplete data set. Google Analytics uses this practice and relies on estimates, leading to incomplete and potentially inaccurate results.

    Privacy-friendly analytics should provide 100% accurate insights without making assumptions about your users’ data.

    GDPR compliance

    Privacy-friendly web analytics platforms adhere to even the strictest privacy laws, including GDPR, HIPAA and CCPA, thanks to the following features :

    • Data anonymisation
    • Cookieless tracking
    • EU data storage
    • First-party cookies by default
    Data subject access request setting Matomo

    Matomo data subject access request settings
    (Image Source)

    Privacy-first platforms also make it easy for companies to fulfil data subject access requests. In Matomo, for example, a dedicated feature lets you find, download and delete all of the data you hold about specific individuals. 

    Cookieless tracking

    Cookieless tracking is a form of visitor tracking that uses methods other than cookies to identify individual users. It is more privacy-friendly because no personal data is collected, and users can withhold consent from cookie banners.

    Matomo uses the most privacy-friendly industry-leading cookieless tracking method, config_id, to anonymously track visitors without fingerprinting them. 

    Top 3 privacy-friendly analytics platforms

    We’ve shortlisted three of the leading privacy-friendly analytics platforms. Learn what they offer, what makes them different and how much they cost.

    Matomo

    Matomo is an open-source web analytics tool and privacy-focused Google Analytics alternative trusted by over one million sites in over 190 countries and over 50 languages. 

    Matomo dashboard

    Matomo dashboard

    Matomo prioritises privacy and keeping businesses compliant with global privacy regulations like GDPR, CCPA and HIPAA. The data you collect is 100% accurate and yours alone. We don’t share it or use it for other purposes. 

    Benefits

    • Matomo’s all-in-one solution offers traditional web and behavioural analytics, such as heatmaps and session recordings. It also includes a free, open-source tag manager
    • Matomo gives you the choice of where to store your user’s data. With Matomo Cloud, that’s in our European servers. With Matomo On-Premise, that’s on your servers.
    • Matomo is open-source. Hundreds of independent developers have reviewed our code, and you can view it yourself on GitHub.

    Pricing 

    Hosting Matomo On-Premise is free, while Matomo Cloud costs $26 per month. 

    Fathom

    Fathom Analytics is a simple, easy-to-use alternative to Google Analytics that puts a premium on privacy. 

    Fathom dashboard

    Fathom dashboard
    (Image Source)

    Fathom has made its platform as easy to use as possible. You can install Fathom on any website or CMS using a single line of code. It also means the platform won’t massively impact your site’s speed or SEO performance. 

    Benefits

    • Fathom complies with all major privacy regulations, including GDPR and CCPA.
    • Fathom doesn’t sample data. It also blocks bots and scrapers, so you only see human visitors.
    • Fathom anonymises IP addresses, so you don’t have to show cookie banners.

    Drawbacks

    • Fathom doesn’t offer many of Matomo’s advanced features like e-commerce tracking, heatmaps, and session recordings.
    • The premium version of Fathom is not open-source. 

    Pricing 

    From $15 per month.

    Plausible

    Plausible Analytics is an open-source, privacy-friendly analytics tool built and hosted in the EU.

    Plausible dashboard

    Plausible dashboard
    (Image Source)

    The platform launched in 2019 as a lightweight, easy-to-use alternative to Google Analytics. Its simplicity is a big selling point. Instead of dozens of menus, it presents the information you need on a single page.

    Benefits

    • Plausible boasts an ultra-lightweight script, which means it has a minimal impact on page loading times. 
    • Plausible is GDPR and CCPA-compliant by design, so there’s no need for cookie banners.
    • Plausible is an open-source software with the source code available on GitHub.

    Drawbacks

    • Plausible lacks advanced privacy controls like a GDPR manager.
    • It has none of Matomo’s advanced features like A/B testing, session recordings or heatmaps. 

    Pricing 

    From $9 per month

    Try Matomo for free

    Ready to try a privacy-friendly analytics solution ? Making the switch is easy with Matomo, as it’s one of the only platforms to import historical Google Analytics data. You can also try Matomo for free for 21 days — no credit card required. 

  • A Beginner’s Guide to Omnichannel Analytics

    14 avril 2024, par Erin

    Linear customer journeys are as obsolete as dial-up internet and floppy disks. As a marketing manager, you know better than anyone that customers interact with your brand hundreds of times across dozens of channels before purchasing. That can make tracking them a nightmare unless you build an omnichannel analytics solution. 

    Alas, if only it were that simple. 

    Unfortunately, it’s not enough to collect data on your customers’ complex journeys just by buying an omnichannel platform. You need to generate actionable insights by using marketing attribution to tie channels to conversions. 

    This article will explain how to build a useful omnichannel analytics solution that lets you understand and improve the customer journey.

    What is omnichannel analytics ?

    Omnichannel analytics collects and analyses customer data from every touchpoint and device. The goal is to collect all this omnichannel data in one place, creating a single, real-time, unified view of your customer’s journey.

    What is omnichannel analytics

    Unfortunately, most businesses haven’t achieved this yet. As Karen Lellouche Tordjman and Marco Bertini say :

    “Despite all the buzz around the concept of omnichannel, most companies still view customer journeys as a linear sequence of standardised touchpoints within a given channel. But the future of customer engagement transforms touchpoints from nodes along a predefined distribution path to full-blown portals that can serve as points of sale or pathways to many other digital and virtual interactions. They link to chatbots, kiosks, robo-advisors, and other tools that customers — especially younger ones — want to engage with.”

    However, doing so is more important than ever — especially when consumers have over 300 digital touchpoints, and the average number of touchpoints in the B2B buyer journey is 27.

    Not only that, but customers expect personalised experiences across every platform — that’s the kind you can only create when you have access to omnichannel data.

    A diagram showing how complex customer journeys are

    What might omnichannel analytics look like in practice for an e-commerce store ?

    An online store would integrate data from channels like its website, mobile app, social media accounts, Google Ads and customer service records. This would show how customers find its brand, how they use each channel to interact with it and which channels convert the most customers. 

    This would allow the e-commerce store to tailor marketing channels to customers’ needs. For instance, they could focus social media use on product discovery and customer support. Google Ads campaigns could target the best-converting products. While all this is happening, the store could also ensure every channel looks the same and delivers the same experience. 

    What are the benefits of omnichannel analytics ?

    Why go to all the trouble of creating a comprehensive view of the customer’s experience ? Because you stand to gain some pretty significant benefits when implementing omnichannel analytics.

    What are the benefits of omnichannel analytics?

    Understand the customer journey

    You want to understand how your customers behave, right ? No other method will allow you to fully understand your customer journey the way omnichannel analytics does. 

    It doesn’t matter how customers engage with your brand — whether that’s your website, app, social media profiles or physical stores — omnichannel analytics capture every interaction.

    With this 360-degree view of your customers, it’s easy to understand how they move between channels, where they encounter issues and what bottlenecks prevent them from converting. 

    Deliver better personalisation

    We don’t have to tell you that personalisation matters. But do you know just how important it is ? Since 56% of customers will become repeat buyers after a personalised experience, delivering them as often as possible is critical. 

    Omnichannel analytics helps in your quest for personalisation by highlighting the individual preferences of customer segments. For example, e-commerce stores can use omnichannel analytics to understand how shoppers behave across different devices and tailor their offers accordingly. 

    Upgrade the customer experience

    Omnichannel analytics gives you the insights to improve every aspect of the customer experience. 

    For starters, you can ensure a consistent brand experience across all your top channels by making sure they look and behave the same.

    Then, you can use omnichannel insights to tailor each channel to your customers’ requirements. For example, most people interacting with your brand on social media may seek support. Knowing that you can create dedicated support accounts to assist users. 

    Improve marketing campaigns

    Which marketing campaigns or traffic sources convert the most customers ? How can you improve these campaigns ? Omnichannel analytics has the answers. 

    When you implement omnichannel analytics you automatically track the performance of every marketing channel by attributing each conversion to one or more traffic sources. This lets you see whether Google Ads bring in more customers than your SEO efforts. Or whether social media ads are the most profitable acquisition channel. 

    Armed with this information, you can improve your marketing efforts — either by focusing on your profitable channels or rectifying problems that stop less profitable channels from converting.

    What are the challenges of omnichannel analytics ?

    There are three challenges when implementing an omnichannel analytics solution :

    What are the challenges of omnichannel analytics?
    • Complex customer journeys : Customer journeys aren’t linear and can be incredibly difficult to track. 
    • Regulatory and privacy issues : When you start gathering customer data, you quickly come up against consumer privacy laws. 
    • No underlying goal : There has to be a reason to go to all this effort, but brands don’t always have goals in mind before they start. 

    You can’t do anything about the first challenge. 

    After all, your customer journey will almost never be linear. And isn’t the point of implementing an omnichannel solution to understand these complex journeys in the first place ? Once you set up omnichannel analytics, these journeys will be much easier to decipher. 

    As for the other two :

    Using the right software that respects user privacy and complies with all major privacy laws will avoid regulatory issues. Take Matomo, for instance. Our software was designed with privacy in mind and is configured to follow the strictest privacy laws, such as GDPR. 

    Tying omnichannel analytics to marketing attribution will solve the final challenge by giving your omnichannel efforts a goal. When you tie omnichannel analytics to your marketing efforts, you aren’t just getting a 360-degree view of your customer journey for the sake of it. You are getting that view to improve your marketing efforts and increase sales.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    How to set up an omnichannel analytics solution

    Want to set up a seamless analytical environment that incorporates data from every possible source ? Follow these five steps :

    Choose one or more analytics providers

    You can use several tools to build an omnichannel analytics solution. These include web and app analytics tools, customer data platforms that centralise first-party data and business intelligence tools (typically used for visualisation). 

    Which tools you use will depend on your goals and your budget — the loftier your ambitions and the higher your budget, the more tools you can use. 

    Ideally, you should use as few tools as possible to capture your data. Most teams won’t need business intelligence platforms, for example. However, you may or may not need both an analytics platform and a customer data platform. Your decision will depend on how many channels your customers use and how well your analytics tool tracks everything.

    If it can capture web and app usage while integrating with third-party platforms like your back-end e-commerce platform, then it’s probably enough.

    Collect accurate data at every touchpoint 

    Your omnichannel analytics efforts hinge on the quantity and quality of data you can collect. You want to gather data from every touchpoint possible and store that data in as few places as possible. That’s why choosing as few tools as possible in the step above is so important. 

    So, where should you start ? Common data sources include :

    • Your website
    • Apps (iOS and Android)
    • Social media profiles
    • ERPs
    • PoS systems

    At the same time, make sure you’re tracking all relevant metrics. Revenue, customer engagement and conversion-focused metrics like conversion rate, dwell time, cart abandonment rate and churn rate are particularly important. 

    Set up marketing attribution

    Setting up marketing attribution (also known as multi-touch attribution) is essential to tie omnichannel data to business goals. It’s the only way to know exactly how valuable each marketing channel is and where each customer comes from. 

    You’ll want to use multi-touch attribution, given you have data from across the customer journey.

    Image of six different attribution models

    Multi-touch attribution models can include (but are not limited to) :

    • Linear : where each touchpoint is given equal weighting
    • Time decay : where touchpoints are more valuable the nearer they are to conversion
    • Position-based : where the first and last touch points are more valuable than all the others. 

    You don’t have to use just one of the models above, however. One of the benefits of using a web analytics tool like Matomo is that you can choose between different attribution models and compare them.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Create reports that help you visualise data

    Dashboards are your friend here. They’ll let you see KPIs at a glance, allowing you to keep track of day-to-day changes in your customer journey. Ideally, you’ll want a platform that lets you customise dashboard widgets so only relevant KPIs are shown. 

    A custom graph created in Matomo

    Setting up standard and custom reports is also important. Custom reports allow you to choose metrics and dimensions that align with your goals. They will also allow you to present your data most meaningfully to your team, increasing the likelihood they act upon insights. 

    Analyse data and take action

    Now that you have customer journey data at your fingertips, it’s time to analyse it. After all, there’s no point in implementing an omnichannel analytics solution if you aren’t going to take action. 

    If you’re unsure where to start, re-read the benefits we listed at the start of this article. You could use your omnichannel insights to improve your marketing campaigns by doubling down on the channels that bring in the best customers.

    Or you could identify (and fix) bottlenecks in the customer journey so customers are less likely to fall out of your funnel between certain channels. 

    Just make sure you take action based on your data alone.

    Make the most of omnichannel analytics with Matomo

    A comprehensive web and app analytics platform is vital to any omnichannel analytics strategy. 

    But not just any solution will do. When privacy regulations impede an omnichannel analytics solution, you need a platform to capture accurate data without breaking privacy laws or your users’ trust. 

    That’s where Matomo comes in. Our privacy-friendly web analytics platform ensures accurate tracking of web traffic while keeping you compliant with even the strictest regulations. Moreover, our range of APIs and SDKs makes it easy to track interactions from all your digital products (website, apps, e-commerce back-ends, etc.) in one place. 

    Try Matomo for free for 21 days. No credit card required.