Recherche avancée

Médias (2)

Mot : - Tags -/plugins

Autres articles (51)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Gestion générale des documents

    13 mai 2011, par

    MédiaSPIP ne modifie jamais le document original mis en ligne.
    Pour chaque document mis en ligne il effectue deux opérations successives : la création d’une version supplémentaire qui peut être facilement consultée en ligne tout en laissant l’original téléchargeable dans le cas où le document original ne peut être lu dans un navigateur Internet ; la récupération des métadonnées du document original pour illustrer textuellement le fichier ;
    Les tableaux ci-dessous expliquent ce que peut faire MédiaSPIP (...)

  • La sauvegarde automatique de canaux SPIP

    1er avril 2010, par

    Dans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
    Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...)

Sur d’autres sites (7587)

  • Easily track Events within Matomo Analytics thanks to Matomo Tag Manager

    7 juin 2019, par Matomo Core Team — Analytics Tips

    Easily track Events within Matomo Analytics thanks to Matomo Tag Manager

    Introduction

    In this article we’ll cover what events in Matomo Analytics are ; and how you can easily set them up thanks to Matomo Tag Manager.

    Key concepts within this article

    • Events
    • Quick definition of the Tag Management System
    • Matomo config
    • Creating triggers
    • Variables

    What are events in Matomo Analytics and why are they useful ?

    Events allow you to measure interactions on your website which are not defined by default. With them you can measure clicks on some elements of a page, such as, how visitors are interacting with dropdown menus, media players, scrolling behaviours etc. You can also use them to define goals which make them a key feature in Matomo Analytics. Learn more about tracking events in Matomo.

    You can easily access the Events report in Matomo Analytics by clicking on the Behaviour category :

    Matomo tag manager event tracking

    And you may read the following message and feel a bit frustrated :

    Matomo tag manager event tracking

    “There is no data for this report” is a nice way to say, “Hey, you are tracking just a tiny part of what Matomo Analytics can do for you.”

    Matomo is a great software, but it can’t guess what you want to track.

    In order for Matomo to register those event tracking interactions, you’ll need to explain it by adding a line of code similar to this one when the interaction happens :

     

    _paq.push(['trackEvent', 'Here you enter whatever you want', 'Here too', 'and here also']);

     

    Let’s imagine you want to track a click on an HTML button, your code will look something similar to this at the moment of the interaction :

    As you can imagine, two main challenges will arise for non developers :

    1. How to access the source code ?
    2. How to define the interaction ?

    Luckily, Matomo Tag Manager makes those steps easy for you. Let’s see how the same tracking is implemented with Matomo Tag Manager.

    A quick definition of what Matomo Tag Manager is

    Matomo Tag Manager lets you manage all your tracking and marketing tags in one easy-to-access place. Please visit this page to learn more about Matomo Tag Manager. In order to start using it, you’ll need to copy/paste a tracking code, named a “container”, within the section of your pages.

    Once the container is on your website, all you need to do is to follow these simple steps :

    1. Add a Matomo Tag.
    2. Assign the condition to fire the tag (what we call the trigger).
    3. Publish your work.
    4. And enjoy

    1 – Add a Matomo Event tracking code

    All you have to do here is click on “CREATE NEW TAG”

    Matomo tag manager event tracking

    Once selected, just mention how you’d like this tag to be named (it is for your internal purpose here so always use an explicit tag name) and the Matomo configuration (the default configuration setting will be fine in most of the cases) :

    Matomo tag manager event tracking

    Then Matomo Tag Manager will ask you the type of tracking you’d like to deploy, in this case, this is an event so select “Event” :

    Matomo tag manager event tracking

    Then all you need is to indicate the values you’d like to push through your event :

    Matomo tag manager event tracking

    To put it in perspective, all we did here through Matomo Tag Manager was implement the equivalent of the following line of code :

    _paq.push(['trackEvent', 'Element interactions', 'Click button', 'Click Me']);

    Let’s now see how can we do this on click code part which we call a trigger.

    2 – Assign the condition to fire the tag

    In order to execute the event we’ll need to define when it will happen. You do this by clicking on Create a new trigger now :

    Matomo tag manager event tracking

    As the interaction we’d like to track is happening when a click occurs, it will be a click trigger, and as our button is not a link, we’ll select All Elements Click :

    Matomo tag manager event tracking

    Once selected you’ll need to be precise on the condition in which the event will be triggered. In this case we do not want to have events pushed every time someone is clicking on something on our website. We only want to track when they click on this specific button. That’s the reason why our trigger is set to fire only when the click occurs on an element which has an id and has the value “cta” :

    Once you click on the green button named CREATE NEW TRIGGER, you validate the tag by clicking on CREATE NEW TAG :

    Matomo tag manager event tracking
    Matomo tag manager event tracking

    Then you can move to the last part.

    3 – Publish your work

    Tag Managers are very powerful as they allow you to easily execute any JavaScript code, CSS or even text content on your websites.

    That’s why when you create your tag it doesn’t go live straight away on your website. In order to do this you need to publish your tag and this is what the “Publish” category is designed for :

    Matomo tag manager event tracking

    After that, click on the second button if you’re confident your tag and trigger are both ready to go live :

    Matomo event tracking tag manager

    4 – Enjoy

    Well done. As your tag is now live, every click made on this button will now be pushed to your Matomo Analytics account within :

    1. The visitor log report :

    Matomo event tracking tag manager

    2. The events report :

    Matomo event tracking tag manager

    You may now be asking, “That’s great, but can I collect something more exciting than clicks ?” 

    Of course you can ! This is what the Matomo Tag Manager is all about.

    As long as you can express it through a trigger you can really push whatever you want to Matomo Analytics. You can track scrolling patterns, an element visible on the page like an image, an ad or the time spent on the page. The options are now open to you with Tag Manager.

    Give them a try ! Change the triggers, start playing around with variables and discover that the possibilities are endless.

    Happy analytics,
    Matomo team

  • Setting/Installing up OpenCV 2.4.6.1+ on Ubuntu 12.04.02

    30 mai 2016, par Damilola

    I had previously used OpenCV 2.4.5 with some certain configs and packages on Ubuntu 12.04.1 but had issues upgrading to OpenCV 2.4.6.1 on Ubuntu 12.04.2

    I would like to share some ideas (a compilation of noteworthy information gathered from several sources including SO, ubuntu.org, asklinux.org and many other ; and of course by trying several procedures)

    Below is what eventually got me through.

    NOTE : ensure you uninstall any previous installation of OpenCV, FFMpeg and other dependencies previously installed.

    STEP 1 (install ffmpeg and dependencies)


    # goto http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/
    # download the latest stable opencv such as 2.4.6.1 (http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.5/opencv-2.4.5.1.tar.gz/download) to current directory (such as home or ~/Document)
    # cd /opt
    # tar -xvf /OpenCV-2.4.6.1.tar.gz
    # cd OpenCV-2.4.6.1
    # create a foler under current dir (following previous step, this should be ), called prepare
    # cd prepare
    # Copy the following script to gedit and save as install.sh to current dir, this should be /prepare
    # Check corresponding url used in the script for latest versions of the package and replace as required
    # Open terminal and navigate to location used above
    # sudo chmod +x install.sh
    # ./install

    echo "Removing any pre-installed ffmpeg, x264, and other dependencies (not all the previously installed dependecies)"
    sudo apt-get remove ffmpeg x264 libx264-dev libvpx-dev librtmp0 librtmp-dev libopencv-dev
    sudo apt-get update

    arch=$(uname -m)
    if [ "$arch" == "i686" -o "$arch" == "i386" -o "$arch" == "i486" -o "$arch" == "i586" ]; then
    flag=0
    else
    flag=1
    fi

    echo "Installing Dependenices"
    sudo apt-get install autoconf automake make g++ curl cmake bzip2 python unzip \
     build-essential checkinstall git git-core libass-dev libgpac-dev \
     libsdl1.2-dev libtheora-dev libtool libva-dev libvdpau-dev libvorbis-dev libx11-dev \
     libxext-dev libxfixes-dev pkg-config texi2html zlib1g-dev

    echo "downloading yasm (assembler used by x264 and FFmpeg)"
    # use git or tarball (not both)
    wget http://www.tortall.net/projects/yasm/releases/yasm-1.2.0.tar.gz
    tar xzvf yasm-1.2.0.tar.gz
    cd yasm-1.2.0

    echo "installing yasm"
    ./configure
    make
    sudo make install
    cd ..

    echo 'READ NOTE BELOW which was extracted from http://wiki.serviio.org/doku.php?id=build_ffmpeg_linux'
    echo 'New version of x264 contains by default support of OpenCL. If not installed or without sense (example Ubuntu 12.04LTS on VMWare) add to configure additional option --disable-opencl. Without this option ffmpeg could not be configured (ERROR: libx264 not found).'

    echo "downloading x264 (H.264 video encoder)"
    # use git or tarball (not both)
    # git clone http://repo.or.cz/r/x264.git or
    git clone git://git.videolan.org/x264.git
    cd x264
    # wget ftp://ftp.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-20130801-2245-stable.tar.bz2
    # tar -xvjf x264-snapshot-20130801-2245-stable.tar.bz2
    # cd x264-snapshot-20130801-2245-stable/

    echo "Installing x264"
    if [ $flag -eq 0 ]; then
    ./configure --enable-static --disable-opencl
    else
    ./configure --enable-shared --enable-pic --disable-opencl
    fi
    make
    sudo make install
    cd ..

    echo "downloading fdk-aac (AAC audio encoder)"
    # use git or tarball (not both)
    git clone --depth 1 git://github.com/mstorsjo/fdk-aac.git
    cd fdk-aac

    echo "installing fdk-aac"
    autoreconf -fiv
    ./configure --disable-shared
    make
    sudo make install
    cd ..

    echo "installing libmp3lame-dev (MP3 audio encoder.)"
    sudo apt-get install libmp3lame-dev

    echo "downloading libopus (Opus audio decoder and encoder.)"
    wget http://downloads.xiph.org/releases/opus/opus-1.0.3.tar.gz
    tar xzvf opus-1.0.3.tar.gz
    cd opus-1.0.3

    echo "installing libopus"
    ./configure --disable-shared
    make
    sudo make install
    cd ..

    echo "downloading libvpx VP8/VP9 video encoder and decoder)"
    # use git or tarball (not both)
    git clone --depth 1 http://git.chromium.org/webm/libvpx.git
    cd libvpx
    # wget http://webm.googlecode.com/files/libvpx-v1.1.0.tar.bz2 (this seems not to be update, but can still be used if the fedoraproject link below is not available))
    # wget http://pkgs.fedoraproject.org/repo/pkgs/libvpx/libvpx-v1.2.0.tar.bz2/400d7c940c5f9d394893d42ae5f463e6/libvpx-v1.2.0.tar.bz2
    # tar xvjf libvpx-v1.2.0.tar.bz2
    # cd libvpx-v1.2.0

    echo "installing libvpx"
    ./configure --disable-examples
    make
    sudo make install
    cd ..

    sudo ldconfig

    echo "downloading ffmpeg"
    # git clone http://repo.or.cz/r/ffmpeg.git
    git clone git://source.ffmpeg.org/ffmpeg.git
    cd ffmpeg/
    # wget http://ffmpeg.org/releases/ffmpeg-2.0.tar.bz2
    # tar -xvjf ffmpeg-2.0.tar.bz2
    # cd ffmpeg-2.0/

    echo "installing ffmpeg"
    if [ $flag -eq 0 ]; then
    ./configure --enable-gpl --enable-libass --enable-libfdk-aac --enable-libopus --enable-libfaac --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora --enable-libvorbis --enable-libx264 --enable-libxvid --enable-nonfree --enable-postproc --enable-version3 --enable-x11grab --enable-libvpx
    else
    ./configure --enable-gpl --enable-libass --enable-libfdk-aac --enable-libopus --enable-libfaac --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora --enable-libvorbis --enable-libx264 --enable-libxvid --enable-nonfree --enable-postproc --enable-version3 --enable-x11grab --enable-libvpx --enable-shared
    fi

    make
    sudo make install
    hash -r

    cd .. # move up one level to prepare folder
    cd .. # move up one level to opencv folder

    echo "Checking to see if you're using your new ffmpeg"
    ffmpeg 2>&1 | head -n1

    sudo ldconfig

    STEP 2 (Install OpenCV and necessary packages)

    echo "Installing Dependenices"    
    sudo apt-get install libtiff4-dev libjpeg-dev libjasper-dev

    echo "installing Video I/O libraries, support for Firewire video cameras and video streaming libraries"
    sudo apt-get install libav-tools libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev v4l-utils v4l-conf

    echo "installing the Python development environment and the Python Numerical library"
    sudo apt-get install python-dev python-numpy

    echo "installing the parallel code processing library (the Intel tbb library)"
    sudo apt-get install libtbb-dev

    echo "installing the Qt dev library"
    sudo apt-get install libqt4-dev libgtk2.0-dev

    echo "installing other dependencies (if need be it would upgrade current version of the packages)"
    sudo apt-get install patch subversion ruby librtmp0 librtmp-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libvpx-dev libxvidcore-dev

    echo installing optional packages"
    sudo apt-get install libdc1394-utils libdc1394-22-dev libdc1394-22 libjpeg-dev libpng-dev libtiff-dev libjasper-dev

    STEP 3 (run ldconfig)

    # Open a new terminal window
    # Open /etc/ld.so.conf and check,
    # if the paths "/usr/lib" and "/usr/local/lib" including the quote exist in the file. If not, add them manually or by
       sudo echo "/usr/local/lib" >> /etc/ld.so.conf
       sudo echo "/usr/lib" >> /etc/ld.so.conf
    # execute the following
       sudo ldconfig

    STEP 4a (Build & Install for OS Usage)

    # still ensure you haven't close the new terminal window open in STEP 3
    # execute the following
    mkdir os_build
    cd os_build
    cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DBUILD_NEW_PYTHON_SUPPORT=ON -DINSTALL_PYTHON_EXAMPLES=ON -DWITH_TBB=ON -DWITH_V4L=ON -DINSTALL_C_EXAMPLES=ON -DBUILD_EXAMPLES=ON -DWITH_QT=ON -DWITH_OPENGL=ON -DWITH_OPENCL=ON -DWITH_EIGEN=ON -DWITH_OPENEXR=ON ..

       make
       sudo make install

    # add the following to user environment variable ~/.bashrc
       export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib
       export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/usr/local/lib/pkgconfig
    # execute the following
       sudo ldconfig
    # start to use and enjoy opencv, it should have been install into any of these locations
    #   /usr/local/include/opencv2, /usr/local/include/opencv, /usr/include/opencv, /usr/include/opencv2, /usr/local/share/opencv
    #   /usr/local/share/OpenCV, /usr/share/opencv, /usr/share/OpenCV, /usr/local/bin/opencv*, /usr/local/lib/libopencv*

    STEP 4b (Build for Java Usage) : OPTIONAL

    # still ensure you haven't close the new terminal window open in STEP 4
    # execute the following
       cd ..
       mkdir java_build
       cd java_build
       cmake -DCMAKE_BUILD_TYPE=RELEASE -DBUILD_SHARED_LIBS=OFF -DINSTALL_PYTHON_EXAMPLES=ON -DWITH_TBB=ON -DWITH_V4L=ON -DINSTALL_C_EXAMPLES=ON -DBUILD_EXAMPLES=ON -DWITH_QT=ON -DWITH_OPENGL=ON -DWITH_OPENCL=ON -DWITH_EIGEN=ON -DWITH_OPENEXR=ON ..

       make

    # You can check the "java_build/bin" directory to locate the jar and libopencv_java.so file for your development
    # As stated in the docs, the Java bindings dynamic library is all-sufficient, i.e. doesn’t depend on other OpenCV libs, but includes all the OpenCV code inside

    STEP 5 (install v4l : Note : installing v4l-utils after opencv installation works for Ubuntu 12.04.2 & OpenCV 2.4.6.1)

    # still ensure you haven't close the new terminal window open in STEP 3
    # goto http://www.linuxtv.org/downloads/v4l-utils
    # download the latest v4l such as v4l-utils-0.9.5.tar.bz2
    # copy the downloaded file to the current terminal dir (following previous step, this should be /prepare)
    # execute the following
       tar -xvjf v4l-utils-0.9.5.tar.bz2
       cd v4l-utils-0.9.5/
       ./configure
       make
       sudo make install
       cd ..
       cd .. # (to go to )
       sudo ldconfig

    Worth Noting

    # To check the path where opencv & other lib files are stored, do:


    pkg-config --cflags opencv

       (output will come as)
       -I/usr/include/opencv



    pkg-config --libs opencv

       (output will come as)
       -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_ --ml -lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib -lopencv_legacy -lopencv_flann

    # The above paths are needed to compile your opencv programs, as given in the next illustration.

    # write a simple C program to test, by saving below program in a file named DisplayImage.c

    #include
       #include <opencv2></opencv2>highgui/highgui.hpp>

       int main(int argc, char *argv[]) {
           IplImage* img=0; /* pointer to an image */
           printf("Hello\n");

           if(argv[1] != 0)
               img = cvLoadImage(argv[1], 0); // 1 for color
           else
               printf("Enter filename\n");

           if(img != 0) {
               cvNamedWindow("Display", CV_WINDOW_AUTOSIZE); // create a window
               cvShowImage("Display", img); // show image in window
               cvWaitKey(0); // wait until user hits a key
               cvDestroyWindow("Display");
           }
           else
               printf("File not found\n");

           return 0;
       }

    # write a simple C++ program to test, by saving below program in a file named DisplayImage.cpp

    #include
    #include <opencv2></opencv2>opencv.hpp>
    #include <opencv2></opencv2>highgui/highgui.hpp>

    using namespace cv;

    int main( int argc, char** argv )
    {
     Mat image;
     image = imread( argv[1], 1 );

     if( argc != 2 || !image.data )
       {
         printf( "No image data \n" );
         return -1;
       }

     namedWindow( "Display Image", CV_WINDOW_AUTOSIZE );
     imshow( "Display Image", image );

     waitKey(0);

     return 0;
    }

    # To compile &amp; run :



    g++  `pkg-config --cflags --libs opencv` &amp;&amp; ./a.out img

    or



    g++ -I/usr/include/opencv -I/usr/local/include -lopencv_core -lopencv_highgui -lopencv_ml -lopencv_imgproc -lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib -lopencv_legacy -lopencv_flann -lopencv_nonfree  &amp;&amp; ./a.out img

    where “img” is the name of any image with extension within the same folder .
    You should be able to see “Hello” and the image in a different window.

    If this runs, Congrats! now you can run any C/C++ program with opencv lib.


    # Now lets simplify the above big command by making a shortcut for it:
    go to your local home directory(cd /home/) and open the .bashrc file using gedit(the file will be hidden). Append the following to the file:



    alias gcv="g++ -I/usr/include/opencv -I/usr/local/include -lopencv_core -lopencv_highgui -lopencv_ml -lopencv_imgproc -lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib -lopencv_legacy -lopencv_flann -lopencv_nonfree"

    and save. Close the terminal and open it again.(as this process requires relogin of the terminal)

    # Now, go to directory containing a sample program &amp; do



    gcv  &amp;&amp; ./a.out

    or



    gcv
       ./a.out input_img.jpg

    As you can see the commands now become similar to $cc filename.c, $./a.out which are used normally for compiling and executing C/C++ programs.


    Some ways to check whether all lib files are installed-

    apt-cache search opencv

    returns :

    libcv-dev - Translation package for libcv-dev
    libcv2.3 - computer vision library - libcv* translation package
    libcvaux-dev - Translation package for libcvaux-dev
    libcvaux2.3 - computer vision library - libcvaux translation package
    libhighgui-dev - Translation package for libhighgui-dev
    libhighgui2.3 - computer vision library - libhighgui translation package
    libopencv-calib3d-dev - development files for libopencv-calib3d
    libopencv-calib3d2.3 - computer vision Camera Calibration library
    libopencv-contrib-dev - development files for libopencv-contrib
    libopencv-contrib2.3 - computer vision contrib library
    libopencv-core-dev - development files for libopencv-core
    libopencv-core2.3 - computer vision core library
    libopencv-dev - development files for opencv
    libopencv-features2d-dev - development files for libopencv-features2d
    libopencv-features2d2.3 - computer vision Feature Detection and Descriptor Extraction library
    libopencv-flann-dev - development files for libopencv-flann
    libopencv-flann2.3 - computer vision Clustering and Search in Multi-Dimensional spaces library
    libopencv-gpu-dev - development files for libopencv-gpu
    libopencv-gpu2.3 - computer vision GPU Processing library
    libopencv-highgui-dev - development files for libopencv-highgui
    libopencv-highgui2.3 - computer vision High-level GUI and Media I/O library
    libopencv-imgproc-dev - development files for libopencv-imgproc
    libopencv-imgproc2.3 - computer vision Image Processing library
    libopencv-legacy-dev - development files for libopencv-legacy
    libopencv-legacy2.3 - computer vision legacy library
    libopencv-ml-dev - development files for libopencv-ml
    libopencv-ml2.3 - computer vision Machine Learning library
    libopencv-objdetect-dev - development files for libopencv-objdetect
    libopencv-objdetect2.3 - computer vision Object Detection library
    libopencv-video-dev - development files for libopencv-video
    libopencv-video2.3 - computer vision Video analysis library
    opencv-doc - OpenCV documentation and examples
    python-opencv - Python bindings for the computer vision library
  • Revision 32594 : plugins en minuscules, et alias pour les noms de sites

    1er novembre 2009, par fil@… — Log

    plugins en minuscules, et alias pour les noms de sites