Recherche avancée

Médias (91)

Autres articles (69)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (10013)

  • IJG swings again, and misses

    1er février 2010, par Mans — Multimedia

    Earlier this month the IJG unleashed version 8 of its ubiquitous libjpeg library on the world. Eager to try out the “major breakthrough in image coding technology” promised in the README file accompanying v7, I downloaded the release. A glance at the README file suggests something major indeed is afoot :

    Version 8.0 is the first release of a new generation JPEG standard to overcome the limitations of the original JPEG specification.

    The text also hints at the existence of a document detailing these marvellous new features, and a Google search later a copy has found its way onto my monitor. As I read, however, my state of mind shifts from an initial excited curiosity, through bewilderment and disbelief, finally arriving at pure merriment.

    Already on the first page it becomes clear no new JPEG standard in fact exists. All we have is an unsolicited proposal sent to the ITU-T by members of the IJG. Realising that even the most brilliant of inventions must start off as mere proposals, I carry on reading. The summary informs me that I am about to witness the introduction of three extensions to the T.81 JPEG format :

    1. An alternative coefficient scan sequence for DCT coefficient serialization
    2. A SmartScale extension in the Start-Of-Scan (SOS) marker segment
    3. A Frame Offset definition in or in addition to the Start-Of-Frame (SOF) marker segment

    Together these three extensions will, it is promised, “bring DCT based JPEG back to the forefront of state-of-the-art image coding technologies.”

    Alternative scan

    The first of the proposed extensions introduces an alternative DCT coefficient scan sequence to be used in place of the zigzag scan employed in most block transform based codecs.

    Alternative scan sequence

    Alternative scan sequence

    The advantage of this scan would be that combined with the existing progressive mode, it simplifies decoding of an initial low-resolution image which is enhanced through subsequent passes. The author of the document calls this scheme “image-pyramid/hierarchical multi-resolution coding.” It is not immediately obvious to me how this constitutes even a small advance in image coding technology.

    At this point I am beginning to suspect that our friend from the IJG has been trapped in a half-world between interlaced GIF images transmitted down noisy phone lines and today’s inferno of SVC, MVC, and other buzzwords.

    (Not so) SmartScale

    Disguised behind this camel-cased moniker we encounter a method which, we are told, will provide better image quality at high compression ratios. The author has combined two well-known (to us) properties in a (to him) clever way.

    The first property concerns the perceived impact of different types of distortion in an image. When encoding with JPEG, as the quantiser is increased, the decoded image becomes ever more blocky. At a certain point, a better subjective visual quality can be achieved by down-sampling the image before encoding it, thus allowing a lower quantiser to be used. If the decoded image is scaled back up to the original size, the unpleasant, blocky appearance is replaced with a smooth blur.

    The second property belongs to the DCT where, as we all know, the top-left (DC) coefficient is the average of the entire block, its neighbours represent the lowest frequency components etc. A top-left-aligned subset of the coefficient block thus represents a low-resolution version of the full block in the spatial domain.

    In his flash of genius, our hero came up with the idea of using the DCT for down-scaling the image. Unfortunately, he appears to possess precious little knowledge of sampling theory and human visual perception. Any block-based resampling will inevitably produce sharp artefacts along the block edges. The human visual system is particularly sensitive to sharp edges, so this is one of the most unwanted types of distortion in an encoded image.

    Despite the obvious flaws in this approach, I decided to give it a try. After all, the software is already written, allowing downscaling by factors of 8/8..16.

    Using a 1280×720 test image, I encoded it with each of the nine scaling options, from unity to half size, each time adjusting the quality parameter for a final encoded file size of no more than 200000 bytes. The following table presents the encoded file size, the libjpeg quality parameter used, and the SSIM metric for each of the images.

    Scale Size Quality SSIM
    8/8 198462 59 0.940
    8/9 196337 70 0.936
    8/10 196133 79 0.934
    8/11 197179 84 0.927
    8/12 193872 89 0.915
    8/13 197153 92 0.914
    8/14 188334 94 0.899
    8/15 198911 96 0.886
    8/16 197190 97 0.869

    Although the smaller images allowed a higher quality setting to be used, the SSIM value drops significantly. Numbers may of course be misleading, but the images below speak for themselves. These are cut-outs from the full image, the original on the left, unscaled JPEG-compressed in the middle, and JPEG with 8/16 scaling to the right.

    Looking at these images, I do not need to hesitate before picking the JPEG variant I prefer.

    Frame offset

    The third and final extension proposed is quite simple and also quite pointless : a top-left cropping to be applied to the decoded image. The alleged utility of this feature would be to enable lossless cropping of a JPEG image. In a typical image workflow, however, JPEG is only used for the final published version, so the need for this feature appears quite far-fetched.

    The grand finale

    Throughout the text, the author makes references to “the fundamental DCT property for image representation.” In his own words :

    This property was found by the author during implementation of the new DCT scaling features and is after his belief one of the most important discoveries in digital image coding after releasing the JPEG standard in 1992.

    The secret is to be revealed in an annex to the main text. This annex quotes in full a post by the author to the comp.dsp Usenet group in a thread with the subject why DCT. Reading the entire thread proves quite amusing. A few excerpts follow.

    The actual reason is much simpler, and therefore apparently very difficult to recognize by complicated-thinking people.

    Here is the explanation :

    What are people doing when they have a bunch of images and want a quick preview ? They use thumbnails ! What are thumbnails ? Thumbnails are small downscaled versions of the original image ! If you want more details of the image, you can zoom in stepwise by enlarging (upscaling) the image.

    So with proper understanding of the fundamental DCT property, the MPEG folks could make their videos more scalable, but, as in the case of JPEG, they are unable to recognize this simple but basic property, unfortunately, and pursue rather inferior approaches in actual developments.

    These are just phrases, and they don’t explain anything. But this is typical for the current state in this field : The relevant people ignore and deny the true reasons, and thus they turn in a circle and no progress is being made.

    However, there are dark forces in action today which ignore and deny any fruitful advances in this field. That is the reason that we didn’t see any progress in JPEG for more than a decade, and as long as those forces dominate, we will see more confusion and less enlightenment. The truth is always simple, and the DCT *is* simple, but this fact is suppressed by established people who don’t want to lose their dubious position.

    I believe a trip to the Total Perspective Vortex may be in order. Perhaps his tin-foil hat will save him.

  • ffmpeg to convert from flac to wav

    2 novembre 2014, par user3580089

    I need to convert a flac file to a wav file without changing sample rate and bit depth. As far as I know changing these properties may distort the audio, so how do i specify them not to be changed ?

    Also, is there any way to prevent metadata to be written to the output file ?

  • CD-R Read Speed Experiments

    21 mai 2011, par Multimedia Mike — Science Projects, Sega Dreamcast

    I want to know how fast I can really read data from a CD-R. Pursuant to my previous musings on this subject, I was informed that it is inadequate to profile reading just any file from a CD-R since data might be read faster or slower depending on whether the data is closer to the inside or the outside of the disc.

    Conclusion / Executive Summary
    It is 100% true that reading data from the outside of a CD-R is faster than reading data from the inside. Read on if you care to know the details of how I arrived at this conclusion, and to find out just how much speed advantage there is to reading from the outside rather than the inside.

    Science Project Outline

    • Create some sample CD-Rs with various properties
    • Get a variety of optical drives
    • Write a custom program that profiles the read speed

    Creating The Test Media
    It’s my understanding that not all CD-Rs are created equal. Fortunately, I have 3 spindles of media handy : Some plain-looking Memorex discs, some rather flamboyant Maxell discs, and those 80mm TDK discs :



    My approach for burning is to create a single file to be burned into a standard ISO-9660 filesystem. The size of the file will be the advertised length of the CD-R minus 1 megabyte for overhead— so, 699 MB for the 120mm discs, 209 MB for the 80mm disc. The file will contain a repeating sequence of 0..0xFF bytes.

    Profiling
    I don’t want to leave this to the vagaries of any filesystem handling layer so I will conduct this experiment at the sector level. Profiling program outline :

    • Read the CD-ROM TOC and get the number of sectors that comprise the data track
    • Profile reading the first 20 MB of sectors
    • Profile reading 20 MB of sectors in the middle of the track
    • Profile reading the last 20 MB of sectors

    Unfortunately, I couldn’t figure out the raw sector reading on modern Linux incarnations (which is annoying since I remember it being pretty straightforward years ago). So I left it to the filesystem after all. New algorithm :

    • Open the single, large file on the CD-R and query the file length
    • Profile reading the first 20 MB of data, 512 kbytes at a time
    • Profile reading 20 MB of sectors in the middle of the track (starting from filesize / 2 - 10 MB), 512 kbytes at a time
    • Profile reading the last 20 MB of sectors (starting from filesize - 20MB), 512 kbytes at a time

    Empirical Data
    I tested the program in Linux using an LG Slim external multi-drive (seen at the top of the pile in this post) and one of my Sega Dreamcast units. I gathered the median value of 3 runs for each area (inner, middle, and outer). I also conducted a buffer flush in between Linux runs (as root : 'sync; echo 3 > /proc/sys/vm/drop_caches').

    LG Slim external multi-drive (reading from inner, middle, and outer areas in kbytes/sec) :

    • TDK-80mm : 721, 897, 1048
    • Memorex-120mm : 1601, 2805, 3623
    • Maxell-120mm : 1660, 2806, 3624

    So the 120mm discs can range from about 10.5X all the way up to a full 24X on this drive. For whatever reason, the 80mm disc fares a bit worse — even at the inner track — with a range of 4.8X - 7X.

    Sega Dreamcast (reading from inner, middle, and outer areas in kbytes/sec) :

    • TDK-80mm : 502, 632, 749
    • Memorex-120mm : 499, 889, 1143
    • Maxell-120mm : 500, 890, 1156

    It’s interesting that the 80mm disc performed comparably to the 120mm discs in the Dreamcast, in contrast to the LG Slim drive. Also, the results are consistent with my previous profiling experiments, which largely only touched the inner area. The read speeds range from 3.3X - 7.7X. The middle of a 120mm disc reads at about 6X.

    Implications
    A few thoughts regarding these results :

    • Since the very definition of 1X is the minimum speed necessary to stream data from an audio CD, then presumably, original 1X CD-ROM drives would have needed to be capable of reading 1X from the inner area. I wonder what the max read speed at the outer edges was ? It’s unlikely I would be able to get a 1X drive working easily in this day and age since the earliest CD-ROM drives required custom controllers.
    • I think 24X is the max rated read speed for CD-Rs, at least for this drive. This implies that the marketing literature only cites the best possible numbers. I guess this is no surprise, similar to how monitors and TVs have always been measured by their diagonal dimension.
    • Given this data, how do you engineer an ISO-9660 filesystem image so that the timing-sensitive multimedia files live on the outermost track ? In the Dreamcast case, if you can guarantee your FMV files will live somewhere between the middle and the end of the disc, you should be able to count on a bitrate of at least 900 kbytes/sec.

    Source Code
    Here is the program I wrote for profiling. Note that the filename is hardcoded (#define FILENAME). Compiling for Linux is a simple 'gcc -Wall profile-cdr.c -o profile-cdr'. Compiling for Dreamcast is performed in the standard KallistiOS manner (people skilled in the art already know what they need to know) ; the only variation is to compile with the '-D_arch_dreamcast' flag, which the default KOS environment adds anyway.

    C :
    1. #ifdef _arch_dreamcast
    2.   #include <kos .h>
    3.  
    4.   /* map I/O functions to their KOS equivalents */
    5.   #define open fs_open
    6.   #define lseek fs_seek
    7.   #define read fs_read
    8.   #define close fs_close
    9.  
    10.   #define FILENAME "/cd/bigfile"
    11. #else
    12.   #include <stdio .h>
    13.   #include <sys /types.h>
    14.   #include </sys><sys /stat.h>
    15.   #include </sys><sys /time.h>
    16.   #include <fcntl .h>
    17.   #include <unistd .h>
    18.  
    19.   #define FILENAME "/media/Full disc/bigfile"
    20. #endif
    21.  
    22. /* Get a current absolute millisecond count ; it doesn’t have to be in
    23. * reference to anything special. */
    24. unsigned int get_current_milliseconds()
    25. {
    26. #ifdef _arch_dreamcast
    27.   return timer_ms_gettime64() ;
    28. #else
    29.   struct timeval tv ;
    30.   gettimeofday(&tv, NULL) ;
    31.   return tv.tv_sec * 1000 + tv.tv_usec / 1000 ;
    32. #endif
    33. }
    34.  
    35. #define READ_SIZE (20 * 1024 * 1024)
    36. #define READ_BUFFER_SIZE (512 * 1024)
    37.  
    38. int main()
    39. {
    40.   int i, j ;
    41.   int fd ;
    42.   char read_buffer[READ_BUFFER_SIZE] ;
    43.   off_t filesize ;
    44.   unsigned int start_time, end_time ;
    45.  
    46.   fd = open(FILENAME, O_RDONLY) ;
    47.   if (fd == -1)
    48.   {
    49.     printf("could not open %s\n", FILENAME) ;
    50.     return 1 ;
    51.   }
    52.   filesize = lseek(fd, 0, SEEK_END) ;
    53.  
    54.   for (i = 0 ; i <3 ; i++)
    55.   {
    56.     if (i == 0)
    57.     {
    58.       printf("reading inner 20 MB...\n") ;
    59.       lseek(fd, 0, SEEK_SET) ;
    60.     }
    61.     else if (i == 1)
    62.     {
    63.       printf("reading middle 20 MB...\n") ;
    64.       lseek(fd, (filesize / 2) - (READ_SIZE / 2), SEEK_SET) ;
    65.     }
    66.     else
    67.     {
    68.       printf("reading outer 20 MB...\n") ;
    69.       lseek(fd, filesize - READ_SIZE, SEEK_SET) ;
    70.     }
    71.     /* read 20 MB ; 40 chunks of 1/2 MB */
    72.     start_time = get_current_milliseconds() ;
    73.     for (j = 0 ; j <(READ_SIZE / READ_BUFFER_SIZE) ; j++)
    74.       if (read(fd, read_buffer, READ_BUFFER_SIZE) != READ_BUFFER_SIZE)
    75.       {
    76.         printf("read error\n") ;
    77.         break ;
    78.       }
    79.     end_time = get_current_milliseconds() ;
    80.     printf("%d - %d = %d ms => %d kbytes/sec\n",
    81.       end_time, start_time, end_time - start_time,
    82.       READ_SIZE / (end_time - start_time)) ;
    83.   }
    84.  
    85.   close(fd) ;
    86.  
    87.   return 0 ;
    88. }