Recherche avancée

Médias (0)

Mot : - Tags -/alertes

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (42)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Contribute to translation

    13 avril 2011

    You can help us to improve the language used in the software interface to make MediaSPIP more accessible and user-friendly. You can also translate the interface into any language that allows it to spread to new linguistic communities.
    To do this, we use the translation interface of SPIP where the all the language modules of MediaSPIP are available. Just subscribe to the mailing list and request further informantion on translation.
    MediaSPIP is currently available in French and English (...)

Sur d’autres sites (8960)

  • What Is Data Misuse & How to Prevent It ? (With Examples)

    13 mai 2024, par Erin

    Your data is everywhere. Every time you sign up for an email list, log in to Facebook or download a free app onto your smartphone, your data is being taken.

    This can scare customers and users who fear their data will be misused.

    While data can be a powerful asset for your business, it’s important you manage it well, or you could be in over your head.

    In this guide, we break down what data misuse is, what the different types are, some examples of major data misuse and how you can prevent it so you can grow your brand sustainably.

    What is data misuse ?

    Data is a good thing.

    It helps analysts and marketers understand their customers better so they can serve them relevant information, products and services to improve their lives.

    But it can quickly become a bad thing for both the customers and business owners when it’s mishandled and misused.

    What is data misuse?

    Data misuse is when a business uses data outside of the agreed-upon terms. When companies collect data, they need to legally communicate how that data is being used. 

    Who or what determines when data is being misused ?

    Several bodies :

    • User agreements
    • Data privacy laws
    • Corporate policies
    • Industry regulations

    There are certain laws and regulations around how you can collect and use data. Failure to comply with these guidelines and rules can result in several consequences, including legal action.

    Keep reading to discover the different types of data misuse and how to prevent it.

    3 types of data misuse

    There are a few different types of data misuse.

    If you fail to understand them, you could face penalties, legal trouble and a poor brand reputation.

    3 types of data misuse.

    1. Commingling

    When you collect data, you need to ensure you’re using it for the right purpose. Commingling is when an organisation collects data from a specific audience for a specific reason but then uses the data for another purpose.

    One example of commingling is if a company shares sensitive customer data with another company. In many cases, sister companies will share data even if the terms of the data collection didn’t include that clause.

    Another example is if someone collects data for academic purposes like research but then uses the data later on for marketing purposes to drive business growth in a for-profit company.

    In either case, the company went wrong by not being clear on what the data would be used for. You must communicate with your audience exactly how the data will be used.

    2. Personal benefit

    The second common way data is misused in the workplace is through “personal benefit.” This is when someone with access to data abuses it for their own gain.

    The most common example of personal benefit data muse is when an employee misuses internal data.

    While this may sound like each instance of data misuse is caused by malicious intent, that’s not always the case. Data misuse can still exist even if an employee didn’t have any harmful intent behind their actions. 

    One of the most common examples is when an employee mistakenly moves data from a company device to personal devices for easier access.

    3. Ambiguity

    As mentioned above, when discussing commingling, a company must only use data how they say they will use it when they collect it.

    A company can misuse data when they’re unclear on how the data is used. Ambiguity is when a company fails to disclose how user data is being collected and used.

    This means communicating poorly on how the data will be used can be wrong and lead to misuse.

    One of the most common ways this happens is when a company doesn’t know how to use the data, so they can’t give a specific reason. However, this is still considered misuse, as companies need to disclose exactly how they will use the data they collect from their customers.

    Laws on data misuse you need to follow

    Data misuse can lead to poor reputations and penalties from big tech companies. For example, if you step outside social media platforms’ guidelines, you could be suspended, banned or shadowbanned.

    But what’s even more important is certain types of data misuse could mean you’re breaking laws worldwide. Here are some laws on data misuse you need to follow to avoid legal trouble :

    General Data Protection Regulation (GDPR)

    The GDPR, or General Data Protection Regulation, is a law within the European Union (EU) that went into effect in 2018.

    The GDPR was implemented to set a standard and improve data protection in Europe. It was also established to increase accountability and transparency for data breaches within businesses and organisations.

    The purpose of the GDPR is to protect residents within the European Union.

    The penalties for breaking GDPR laws are fines up to 20 million Euros or 4% of global revenues (whatever the higher amount is).

    The GDPR doesn’t just affect companies in Europe. You can break the GDPR’s laws regardless of where your organisation is located worldwide. As long as your company collects, processes or uses the personal data of any EU resident, you’re subject to the GDPR’s rules.

    If you want to track user data to grow your business, you need to ensure you’re following international data laws. Tools like Matomo—the world’s leading privacy-friendly web analytics solution—can help you achieve GDPR compliance and maintain it.

    With Matomo, you can confidently enhance your website’s performance, knowing that you’re adhering to data protection laws. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    California Consumer Privacy Act (CCPA)

    The California Consumer Privacy Act (CCPA) is another important data law companies worldwide must follow.

    Like GDPR, the CCPA is a data privacy law established to protect residents of a certain region — in this case, residents of California in the United States.

    The CCPA was implemented in 2020, and businesses worldwide can be penalised for breaking the regulations. For example, if you’re found violating the CCPA, you could be fined $7,500 for each intentional violation.

    If you have unintentional violations, you could still be fined, but at a lesser fee of $2,500.

    The Gramm-Leach-Bliley Act (GLBA)

    If your business is located within the United States, then you’re subject to a federal law implemented in 1999 called The Gramm-Leach-Bliley Act (GLB Act or GLBA).

    The GLBA is also known as the Financial Modernization Act of 1999. Its purpose is to control the way American financial institutions handle consumer data. 

    In the GLBA, there are three sections :

    1. The Financial Privacy Rule : regulates the collection and disclosure of private financial data.
    2. Safeguards Rule : Financial institutions must establish security programs to protect financial data.
    3. Pretexting Provisions : Prohibits accessing private data using false pretences.

    The GLBA also requires financial institutions in the U.S. to give their customers written privacy policy communications that explain their data-sharing practices.

    4 examples of data misuse in real life

    If you want to see what data misuse looks like in real life, look no further.

    Big tech is central to some of the biggest data misuses and scandals.

    4 examples of data misuse in real life.

    Here are a few examples of data misuse in real life you should take note of to avoid a similar scenario :

    1. Facebook election interference

    One of history’s most famous examples of data misuse is the Facebook and Cambridge Analytica scandal in 2018.

    During the 2018 U.S. midterm elections, Cambridge Analytica, a political consulting firm, acquired personal data from Facebook users that was said to have been collected for academic research.

    Instead, Cambridge Analytica used data from roughly 87 million Facebook users. 

    This is a prime example of commingling.

    The result ? Cambridge Analytica was left bankrupt and dissolved, and Facebook was fined $5 billion by the Federal Trade Commission (FTC).

    2. Uber “God View” tracking

    Another big tech company, Uber, was caught misusing data a decade ago. 

    Why ?

    Uber implemented a new feature for its employees in 2014 called “God View.”

    The tool enabled Uber employees to track riders using their app. The problem was that they were watching them without the users’ permission. “God View” lets Uber spy on their riders to see their movements and locations.

    The FTC ended up slapping them with a major lawsuit, and as part of their settlement agreement, Uber agreed to have an outside firm audit their privacy practices between 2014 and 2034.

    Uber "God View."

    3. Twitter targeted ads overstep

    In 2019, Twitter was found guilty of allowing advertisers to access its users’ personal data to improve advertisement targeting.

    Advertisers were given access to user email addresses and phone numbers without explicit permission from the users. The result was that Twitter ad buyers could use this contact information to cross-reference with Twitter’s data to serve ads to them.

    Twitter stated that the data leak was an internal error. 

    4. Google location tracking

    In 2020, Google was found guilty of not explicitly disclosing how it’s using its users’ personal data, which is an example of ambiguity.

    The result ?

    The French data protection authority fined Google $57 million.

    8 ways to prevent data misuse in your company

    Now that you know the dangers of data misuse and its associated penalties, it’s time to understand how you can prevent it in your company.

    How to prevent data misuse in your company.

    Here are eight ways you can prevent data misuse :

    1. Track data with an ethical web analytics solution

    You can’t get by in today’s business world without tracking data. The question is whether you’re tracking it safely or not.

    If you want to ensure you aren’t getting into legal trouble with data misuse, then you need to use an ethical web analytics solution like Matomo.

    With it, you can track and improve your website performance while remaining GDPR-compliant and respecting user privacy. Unlike other web analytics solutions that monetise your data and auction it off to advertisers, with Matomo, you own your data.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    2. Don’t share data with big tech

    As the data misuse examples above show, big tech companies often violate data privacy laws.

    And while most of these companies, like Google, appear to be convenient, they’re often inconvenient (and much worse), especially regarding data leaks, privacy breaches and the sale of your data to advertisers.

    Have you ever heard the phrase : “You are the product ?” When it comes to big tech, chances are if you’re getting it for free, you (and your data) are the products they’re selling.

    The best way to stop sharing data with big tech is to stop using platforms like Google. For more ideas on different Google product alternatives, check out this list of Google alternatives.

    3. Identity verification 

    Data misuse typically isn’t a company-wide ploy. Often, it’s the lack of security structure and systems within your company. 

    An important place to start is to ensure proper identity verification for anyone with access to your data.

    4. Access management

    After establishing identity verification, you should ensure you have proper access management set up. For example, you should only give specific access to specific roles in your company to prevent data misuse.

    5. Activity logs and monitoring

    One way to track data misuse or breaches is by setting up activity logs to ensure you can see who is accessing certain types of data and when they’re accessing it.

    You should ensure you have a team dedicated to continuously monitoring these logs to catch anything quickly.

    6. Behaviour alerts 

    While manually monitoring data is important, it’s also good to set up automatic alerts if there is unusual activity around your data centres. You should set up behaviour alerts and notifications in case threats or compromising events occur.

    7. Onboarding, training, education

    One way to ensure quality data management is to keep your employees up to speed on data security. You should ensure data security is a part of your employee onboarding. Also, you should have regular training and education to keep people informed on protecting company and customer data.

    8. Create data protocols and processes 

    To ensure long-term data security, you should establish data protocols and processes. 

    To protect your user data, set up rules and systems within your organisation that people can reference and follow continuously to prevent data misuse.

    Leverage data ethically with Matomo

    Data is everything in business.

    But it’s not something to be taken lightly. Mishandling user data can break customer trust, lead to penalties from organisations and even create legal trouble and massive fines.

    You should only use privacy-first tools to ensure you’re handling data responsibly.

    Matomo is a privacy-friendly web analytics tool that collects, stores and tracks data across your website without breaking privacy laws.

    With over 1 million websites using Matomo, you can track and improve website performance with :

    • Accurate data (no data sampling)
    • Privacy-friendly and compliant with privacy regulations like GDPR, CCPA and more
    • Advanced features like heatmaps, session recordings, A/B testing and more

    Try Matomo free for 21-days. No credit card required.

  • A Guide to Ethical Web Analytics in 2024

    17 juin 2024, par Erin

    User data is more valuable and sought after than ever. 

    Ninety-four percent of respondents in Cisco’s Data Privacy Benchmark Study said their customers wouldn’t buy from them if their data weren’t protected, with 95% saying privacy was a business imperative. 

    Unfortunately, the data collection practices of most businesses are far from acceptable and often put their customers’ privacy at risk. 

    But it doesn’t have to be this way. You can ethically collect valuable and insightful customer data—you just need the right tools.

    In this article, we show you what an ethical web analytics solution can look like, why Google Analytics is a problem and how you can collect data without risking your customers’ privacy.

    What is ethical web analytics ?

    Ethical web analytics put user privacy first. These platforms prioritise privacy and transparency by only collecting necessary data, avoiding implicit user identification and openly communicating data practices and tracking methods. 

    Ethical tools adhere to data protection laws like GDPR as standard (meaning businesses using these tools never have to worry about fines or disruptions). In other words, ethical web analytics refrain from exploiting and profiting from user behaviour and data. 

    Unfortunately, most traditional data solutions collect as much data as possible without users’ knowledge or consent.

    Why does digital privacy matter ?

    Digital privacy matters because companies have repeatedly proven they will collect and use data for financial gain. It also presents security risks. Unsecured user data can lead to identity theft, cyberattacks and harassment. 

    Big tech companies like Google and Meta are often to blame for all this. These companies collect millions of user data points — like age, gender, income, political beliefs and location. Worse still, they share this information with interested third parties.

    After public outrage over data breaches and other privacy scandals, consumers are taking active steps to disallow tracking where possible. IAPP’s Privacy and Consumer Trust Report finds that 68% of consumers across 19 countries are somewhat or very concerned about their digital privacy. 

    There’s no way around it : companies of all sizes and shapes need to consider how they handle and protect customers’ private information

    Why should you use an ethical web analytics tool ?

    When companies use ethical web analytics tools they can build customer trust, boost their brand reputation, improve data security practices and future proof their website tracking solution. 

    Boost brand reputation

    The fallout from a data privacy scandal can be severe. 

    Just look at what happened to Facebook during the Cambridge Analytica data scandal. The eponymous consulting firm harvested 50 million Facebook profiles and used that information to target people with political messages. Due to the instant public backlash, Facebook’s stock tanked, and use of the “delete Facebook” hashtag increased by 423% in the following days.

    That’s because consumers care about data privacy, according to Deloitte’s Connected Consumer Study :

    • Almost 90 percent agree they should be able to view and delete data companies collect 
    • 77 percent want the government to introduce stricter regulations
    • Half feel the benefits they get from online services outweigh data privacy concerns.

    If you can prove you buck the trend by collecting data using ethical methods, it can boost your brand’s reputation. 

    Build trust with customers

    At the same time, collecting data in an ethical way can help you build customer trust. You’ll go a long way to changing consumer perceptions, too. Almost half of consumers don’t like sharing data, and 57% believe companies sell their data. 

    This additional trust should generate a positive ROI for your business. According to Cisco’s Data Privacy Benchmark Study, the average company gains $180 for every $100 they invest in privacy. 

    Improve data security

    According to IBM’s Cost of a Data Breach report, the average cost of a data breach is nearly $4.5 million. This kind of scenario becomes much less likely when you use an ethical tool that collects less data overall and anonymises the data you do collect. 

    Futureproof your web analytics solution

    The obvious risk of not complying with privacy regulations is a fine — which can be up to €20 million, or 4% of worldwide annual revenue in the case of GDPR.

    It’s not just fines and penalties you risk if you fail to comply with privacy regulations like GDPR. For some companies, especially larger ones, the biggest risk of non-compliance with privacy regulations is the potential sudden need to abandon Google Analytics and switch to an ethical alternative.

    If Data Protection Authorities ban Google Analytics again, as has happened in Austria, France, and other countries, businesses will be forced to drop everything and make an immediate transition to a compliant web analytics solution.

    When an organisation’s entire marketing operation relies on data, migrating to a new solution can be incredibly painful and time-consuming. So, the sooner you switch to an ethical tool, the less of a headache the process will be. 

    The problem with Google Analytics

    Google Analytics (GA) is the most popular analytics platform in the world, but it’s a world away from being an ethical tool. Here’s why :

    You don’t have data ownership

    Google Analytics is attractive to businesses of all sizes because of its price. Everyone loves getting something for free, but there’s still a cost — your and your customers’ data.

    That’s because Google combines the data you collect with information from the millions of other websites it tracks to inform its advertising efforts. It may also use your data to train large language models like Gemini. 

    It has a rocky history with GDPR laws

    Google and EU regulators haven’t always got along. For example, the German Data Protection Authority is investigating 200,000 pending cases against websites using GA. The platform has also been banned and added back to the EU-US Data Privacy Framework several times over the past few years. 

    You can use GA to collect data about EU customers right now, but there’s no guarantee you’ll be able to do so in the future. 

    It requires a specific setup to remain compliant

    While you can currently use GA in a GDPR-compliant way — owing to its inclusion in the EU-US Data Privacy Framework — you have to set it up in a very specific way. That’s because the platform’s compliance depends on what data you collect, how you inform users and the level of consent you acquire. You’ll still need to include an extensive privacy policy on your website. 

    What does ethical web analytics look like ?

    An ethical web analytics solution should put user privacy first, ensure compliance with regulations like GDPR, give businesses 100% control of the data they collect and be completely transparent about data collection and storage practices. 

    What does ethical web tracking look like?

    100% data ownership

    You don’t fully control customer data when you use Google Analytics. The search giant uses your data for its own advertising purposes and may also use it to train large language models like Gemini. 

    When you choose an ethical web analytics alternative like Matomo, you can ensure you completely own your data.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Respects user privacy

    It’s possible to track and measure user behaviour without collecting personally identifiable information (PII). Just look at the ethical web analytics tools we’ve reviewed below. 

    These platforms respect user privacy and conform to strict privacy regulations like GDPR, CCPA and HIPAA by incorporating some or all of the following features :

    In Matomo’s case, it’s all of the above. Better still, you can check our privacy credentials yourself. Our software’s source code is open source on GitHub and accessible to anyone at any time. 

    Compliant with government regulations

    While Google’s history with data regulations is tumultuous, an ethical web analytics platform should follow even the strictest privacy laws, including GDPR, HIPAA, CCPA, LGPD and PECR.

    But why stop there ? Matomo has been approved by the French Data Protection Authority (CNIL) as one of the few web analytics tools that French sites can use to collect data without tracking consent. So you don’t need an annoying consent banner popping up on your website anymore. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Complete transparency 

    Ethical web analytics tools will be upfront about their data collection practices, whether that’s in the U.S., EU, or on your own private servers. Look for a solution that refrains from collecting personally identifiable information, shows where data is stored, and lets you alter tracking methods to increase privacy even further. 

    Some solutions, like Matomo, will increase transparency further by providing open source software. Anyone can find our source code on GitHub to see exactly how our platform tracks and stores user data. This means our code is regularly examined and reviewed by a community of developers, making it more secure, too.

    Ethical web analytics solutions

    There are several options for an ethical web analytics tool. We list three of the best providers below. 

    Matomo

    Matomo is an open source web analytics tool and privacy-focused Google Analytics alternative used by over one million sites globally. 

    Screenshot example of the Matomo dashboard

    Matomo is fully compliant with prominent global privacy regulations like GDPR, CCPA and HIPAA, meaning you never have to worry about collecting consent when tracking user behaviour. 

    The data you collect is completely accurate since Matomo doesn’t use data sampling and is 100% yours. We don’t share data with third parties but can prove it. Our product source code is publicly available on GitHub. As a community-led project, you can download and install it yourself for free. 

    With Matomo, you get a full range of web analytics capabilities and behavioural analytics. That includes your standard metrics (think visitors, traffic sources, bounce rates, etc.), advanced features to analyse user behaviour like A/B Testing, Form Analytics, Heatmaps and Session Recordings. 

    Migrating to Matomo is easy. You can even import historical Google Analytics data to generate meaningful insights immediately. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Fathom

    Fathom Analytics is a lightweight privacy-focused analytics solution that launched in 2018. It aims to be an easy-to-use Google Analytics alternative that doesn’t compromise privacy. 

    A screenshot of the Fathom website

    Like Matomo, Fathom complies with all major privacy regulations, including GDPR and CCPA. It also provides 100% accurate, unsampled reports and doesn’t share your data with third parties. 

    While Fathom provides fairly comprehensive analytics reports, it doesn’t have some of Matomo’s more advanced features. That includes e-commerce tracking, heatmaps, session recordings, and more. 

    Plausible

    Plausible Analytics is another open source Google Analytics alternative that was built and hosted in the EU. 

    A screenshot of the Plausible website

    Launched in 2019, Plausible is a newer player in the privacy-focused analytics market. Still, its ultra-lightweight script makes it an attractive option for organisations that prioritise speed over everything else. 

    Like Matomo and Fathom, Plausible is GDPR and CCPA-compliant by design. Nor is there any cap on the amount of data you collect or any debate over whether the data is accurate (Plausible doesn’t use data sampling) or who owns the data (you do). 

    Matomo makes it easy to migrate to an ethical web analytics alternative

    There’s no reason to put your users’ privacy at risk, especially when there are so many benefits to choosing an ethical tool. Whether you want to avoid fines, build trust with your customers, or simply know you’re doing the right thing, choosing a privacy-focused, ethical solution like Matomo is taking a massive step in the right direction. 

    Making the switch is easy, too. Matomo is one of the few options that lets you import historical Google Analytics data, so starting from scratch is unnecessary. 

    Get started today by trying Matomo for free for 21-days. No credit card required. 

  • A Guide to Bank Customer Segmentation

    18 juillet 2024, par Erin

    Banking customers are more diverse, complex, and demanding than ever. As a result, banks have to work harder to win their loyalty, with 75% saying they would switch to a bank that better fits their needs.

    The problem is banking customers’ demands are increasingly varied amid economic uncertainties, increased competition, and generational shifts.

    If banks want to retain their customers, they can’t treat them all the same. They need a bank customer segmentation strategy that allows them to reach specific customer groups and cater to their unique demands.

    What is customer segmentation ?

    Customer segmentation divides a customer base into distinct groups based on shared characteristics or behaviours.

    This allows companies to analyse the behaviours and needs of different customer groups. Banks can use these insights to target segments with relevant marketing throughout the customer cycle, e.g., new customers, inactive customers, loyal customers, etc.

    You combine data points from multiple segmentation categories to create a customer segment. The most common customer segmentation categories include :

    • Demographic segmentation
    • Website activity segmentation
    • Geographic segmentation
    • Purchase history segmentation
    • Product-based segmentation
    • Customer lifecycle segmentation
    • Technographic segmentation
    • Channel preference segmentation
    • Value-based segmentation
    A chart with icons representing the different customer segmentation categories for banks

    By combining segmentation categories, you can create detailed customer segments. For example, high-value customers based in a particular market, using a specific product, and approaching the end of the lifecycle. This segment is ideal for customer retention campaigns, localised for their market and personalised to satisfy their needs.

    Browser type in Matomo

    Matomo’s privacy-centric web analytics solution helps you capture data from the first visit. Unlike Google Analytics, Matomo doesn’t use data sampling (more on this later) or AI to fill in data gaps. You get 100% accurate data for reliable insights and customer segmentation.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Why is customer segmentation important for banks ?

    Customer segmentation allows you to address the needs of specific groups instead of treating all of your customers the same. This has never been more important amid a surge in bank switching, with three in four customers ready to switch to a provider that better suits their needs.

    Younger customers are the most likely to switch, with 19% of 18-24 year olds changing their primary bank in the past year (PDF).

    Customer expectations are changing, driven by economic uncertainties, declining trust in traditional banking, and the rise of fintech. Even as economic pressures lift, banks need to catch up with the demands of maturing millennials, Gen Z, and future generations of banking customers.

    Switching is the new normal, especially for tech-savvy customers encouraged by an expanding world of digital banking options.

    To retain customers, banks need to know them better and understand how their needs change over time. Customer retention provides the insights banks need to understand these needs at a granular level and the means to target specific customer groups with relevant messages.

    At its core, customer segmentation is essential to banks for two key reasons :

    • Customer retention : Holding on to customers for longer by satisfying their personal needs.
    • Customer lifetime value : Maximising ongoing customer revenue through retention, purchase frequency, cross-selling, and upselling.

    Here are some actionable bank customer segmentation strategies that can achieve these two objectives :

    Prevent switching with segment analysis

    Use customer segmentation to prevent them from switching to rivals by knowing what they want from you. Analyse customer needs and how they change throughout the lifecycle. Third-party data reveals general trends, but what do your customers want ?

    A graph showing different customer segments and example data.

    Use first-party customer data and segmentation to go beyond industry trends. Know exactly what your customers want from you and how to deliver targeted messages to each segment — e.g., first-time homebuyers vs. retirement planners.

    Keep customers active with segment targeting

    Target customer segments to keep customers engaged and motivated. Create ultra-relevant marketing messages and deliver them with precision to distinct customer segments. Nurture customer motivation by continuing to address their problems and aspirations.

    Improve the quality of services and products

    Knowing your customers’ needs in greater detail allows you to adapt your products and messages to cater to the most important segments. Customers switch banks because they feel their needs are better met elsewhere. Prevent this by implementing customer segmentation insights into product development and marketing.

    Personalise customer experiences by layering segments

    Layer segments to create ultra-specific target customer groups for personalised services and marketing campaigns. For example, top-spending customers are one of your most important segments, but there’s only so much you can do with this. However, you can divide this group into even narrower target audiences by layering multiple segments.

    For example, segmenting top-spending customers by product type can create more relevant messaging. You can also segment recent activity and pinpoint specific usage segments, such as those with a recent drop in transactions.

    Now, you have a three-layered segment of high-spending customers who use specific products less often and whom you can target with re-engagement campaigns.

    Maximise customer lifetime value

    Bringing all of this together, customer segmentation helps you maximise customer lifetime value in several ways :

    • Prevent switching
    • Enhance engagement and motivation
    • Re-engage customers
    • Cross-selling, upselling
    • Personalised customer loyalty incentives

    The longer you retain customers, the more you can learn about them, and the more effective your lifetime value campaigns will be.

    Balancing bank customer segmentation with privacy and marketing regulations

    Of course, customer segmentation uses a lot of data, which raises important legal and ethical questions. First, you need to comply with data and privacy regulations, such as GDPR and CCPA. Second, you also have to consider the privacy expectations of your customers, who are increasingly aware of privacy issues and rising security threats targeting financial service providers.

    If you aim to retain and maximise customer value, respecting their privacy and protecting their data are non-negotiables.

    Regulators are clamping down on finance

    Regulatory scrutiny towards the finance industry is intensifying, largely driven by the rise of fintech and the growing threat of cyber attacks. Not only was 2023 a record-breaking year for finance security breaches but several compromises of major US providers “exposed shortcomings in the current supervisory framework and have put considerable public pressure on banking authorities to reevaluate their supervisory and examination programs” (Deloitte).

    Banks face some of the strictest consumer protections and marketing regulations, but the digital age creates new threats.

    In 2022, the Consumer Financial Protection Bureau (CFPB) warned that digital marketers must comply with finance consumer protections when targeting audiences. CFPB Director Rohit Chopra said : “When Big Tech firms use sophisticated behavioural targeting techniques to market financial products, they must adhere to federal consumer financial protection laws.”

    This couldn’t be more relevant to customer segmentation and the tools banks use to conduct it.

    Customer data in the hands of agencies and big tech

    Banks should pay attention to the words of CFPB Director Rohit Chopra when partnering with marketing agencies and choosing analytics tools. Digital marketing agencies are rarely experts in financial regulations, and tech giants like Google don’t have the best track record for adhering to them.

    Google is constantly in the EU courts over its data use. In 2022, the EU ruled that the previous version of Google Analytics violated EU privacy regulations. Google Analytics 4 was promptly released but didn’t resolve all the issues.

    Meanwhile, any company that inadvertently misuses Google Analytics is legally responsible for its compliance with data regulations.

    Banks need a privacy-centric alternative to Google Analytics

    Google’s track record with data regulation compliance is a big issue, but it’s not the only one. Google Analytics uses data sampling, which Google defines as the “practice of analysing a subset of data to uncover meaningful information from a larger data set.”

    This means Google Analytics places thresholds on how much of your data it analyses — anything after that is calculated assumptions. We’ve explained why this is such a problem before, and GA4 relies on data sampling even more than the previous version.

    In short, banks should question whether they can trust Google with their customer data and whether they can trust Google Analytics to provide accurate data in the first place. And they do. 80% of financial marketers say they’re concerned about ad tech bias from major providers like Google and Meta.

    Segmentation options in Matomo

    Matomo is the privacy-centric alternative to Google Analytics, giving you 100% data ownership and compliant web analytics. With no data sampling, Matomo provides 20-40% more data to help you make accurate, informed decisions. Get the data you need for customer segmentation without putting their data at risk.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Bank customer segmentation examples

    Now, let’s look at some customer segments you create and layer to target specific customer groups.

    Visit-based segmentation

    Visit segmentation filters audiences based on the pages they visit on your website and the behaviors they exhibit—for example, first-time visitors vs. returning visitors or landing page visitors vs. blog page visitors.

    If you look at HSBC’s website, you’ll see it is structured into several categories for key customer personas. One of its segments is international customers living in the US, so it has pages and resources expats, people working in the US, people studying in the US, etc. 

    A screenshot of HSBC's US website showing category pages for different customer personas

    By combining visit-based segmentation with ultra-relevant pages for specific target audiences, HSBC can track each group’s demand and interest and analyse their behaviours. It can determine which audiences are returning, which products they want, and which messages convert them.

    Demographic segmentation

    Demographic segmentation divides customers by attributes such as age, gender, and location. However, you can also combine these insights with other non-personal data to better understand specific audiences.

    For example, in Matomo, you can segment audiences based on the language of their browser, the country they’re visiting from, and other characteristics. So, in this case, HSBC could differentiate between visitors already residing in the US and those outside of the country looking for information on moving there.

    a screenshot of Matomo's location reporting

    It could determine which countries they’re visiting, which languages to localise for, and which networks to run ultra-relevant social campaigns on.

    Interaction-based segmentation

    Interaction-based segmentation uses events and goals to segment users based on their actions on your website. For example, you can segment audiences who visit specific URLs, such as a loan application page, or those who don’t complete an action, such as failing to complete a form.

    A screenshot of setting up goals in Matamo

    With events and goals set up, you can track the actions visitors complete before making purchases. You can monitor topical interests, page visits, content interactions, and pathways toward conversions, which feed into their customer journey.

    From here, you can segment customers based on their path leading up to their first purchase, follow-up purchases, and other actions.

    Purchase-based segmentation

    Purchase-based segmentation allows you to analyse the customer behaviours related to their purchase history and spending habits. For example, you can track the journey of repeat customers or identify first-time buyers showing interest in other products/services.

    You can implement these insights into your cross-selling and upselling campaigns with relevant messages designed to increase retention and customer lifetime value.

    Get reliable website analytics for your bank customer segmentation needs

    With customers switching in greater numbers, banks need to prioritise customer retention and lifetime value. Customer segmentation allows you to target specific customer groups and address their unique needs — the perfect strategy to stop them from moving to another provider.

    Quality, accurate data is the key ingredient of an effective bank customer segmentation strategy. Don’t accept data sampling from Google Analytics or any other tool that limits the amount of your own data you can access. Choose a web analytics tool like Matamo that unlocks the full potential of your website analytics to get the most out of bank customer segmentation.

    Matomo is trusted by over 1 million websites globally, including many banks, for its accuracy, compliance, and reliability. Discover why financial institutions rely on Matomo to meet their web analytics needs.

    Start collecting the insights you need for granular, layered segmentation — without putting your bank customer data at risk. Request a demo of Matomo now.