Recherche avancée

Médias (1)

Mot : - Tags -/portrait

Autres articles (92)

  • Keeping control of your media in your hands

    13 avril 2011, par

    The vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
    While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
    MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
    MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Emballe médias : à quoi cela sert ?

    4 février 2011, par

    Ce plugin vise à gérer des sites de mise en ligne de documents de tous types.
    Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;

Sur d’autres sites (13565)

  • lavfi/dnn_classify : add filter dnn_classify for classification based on detection...

    17 mars 2021, par Guo, Yejun
    lavfi/dnn_classify : add filter dnn_classify for classification based on detection bounding boxes
    

    classification is done on every detection bounding box in frame's side data,
    which are the results of object detection (filter dnn_detect).

    Please refer to commit log of dnn_detect for the material for detection,
    and see below for classification.

    - download material for classifcation :
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label

    - run command as :
    ./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -

    We'll see the detect&classify result as below :
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes :
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] source : face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 0, region : (1005, 813) -> (1086, 905), label : face, confidence : 10000/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : happy, confidence : 6757/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 1, region : (888, 839) -> (967, 926), label : face, confidence : 6917/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : anger, confidence : 4320/10000.

    Signed-off-by : Guo, Yejun <yejun.guo@intel.com>

    • [DH] configure
    • [DH] doc/filters.texi
    • [DH] libavfilter/Makefile
    • [DH] libavfilter/allfilters.c
    • [DH] libavfilter/vf_dnn_classify.c
  • lavd/v4l2 : detect device name truncation

    25 novembre 2021, par Anton Khirnov
    lavd/v4l2 : detect device name truncation
    

    Silences the following warning with gcc 10 :
    src/libavdevice/v4l2.c : In function ‘v4l2_get_device_list’ :
    src/libavdevice/v4l2.c:1042:64 : warning : ‘%s’ directive output may be truncated writing up to 255 bytes into a region of size 251 [-Wformat-truncation=]
    1042 | ret = snprintf(device_name, sizeof(device_name), "/dev/%s", entry->d_name) ;
    | ^ 
    src/libavdevice/v4l2.c:1042:15 : note : ‘snprintf’ output between 6 and 261 bytes into a destination of size 256
    1042 | ret = snprintf(device_name, sizeof(device_name), "/dev/%s", entry->d_name) ;
    | ^ 

    Previous patches intending to silence it have proposed increasing the
    buffer size, but doing that correctly seems to be tricky. Failing on
    truncation is simpler and just as effective (as excessively long device
    names are unlikely).

    • [DH] libavdevice/v4l2.c
  • ffmpeg node js s3 stream screenshots qestion

    20 octobre 2015, par user3564443

    On my Node js server I need get video from s3, generate thumbnail for it, set thumbnail to s3, without saving video or thumbnail on my server. So I need to use streams for this. For thumbnail generation I use fluent-ffmpeg.

    Is it possible to get screenshots from streams using fluent-ffmpeg ?

    Is the correct way to intercept s3 getObject stream, that there was no need to download full video ?

    var config = require('../config');
    var AWS = require('aws-sdk');
    AWS.config.update({
     accessKeyId: config.AWS_accessKeyId,
     secretAccessKey: config.AWS_secretAccessKey,
     region: 'eu-west-1'
    });
    var s3 = new AWS.S3();
    var fs = require('fs');
    var ffmpeg = require('fluent-ffmpeg');

    exports.generateVideoThumbnail = function(fileId, url, done) {
     var params = {
       Bucket: config.AWS_bucket,
       Key: url
     };
     var input = s3.getObject(params);
     var stream = fs.createWriteStream('./screenshot.png');
     return ffmpeg(input).screenshots({
       timestamps: ['0.1', '0.2'],
       size: '200x200'
     }).output('./screenshot.png').output(stream).on('error', function(err) {
       return done(err);
     }).on('end', function() {
       input.close();
       var _key = "files/" + fileId + "/thumbnail.png";
       return s3.putObject({
         Bucket: config.AWS_bucket,
         Key: _key,
         Body: stream,
         ContentType: 'image/jpeg'
       }, function(err) {
         return done(err);
       });
     });
    };