Recherche avancée

Médias (91)

Autres articles (63)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

Sur d’autres sites (3630)

  • 16 Website Metrics to Track If You Want to Grow Your Business

    9 avril 2024, par Erin

    Conversion rate.

    Bounce rate.

    Sessions.

    There are dozens of metrics to keep up with in web analytics. It can be confusing at times trying to keep up with everything.

    But, if you want to improve your website performance and grow your business, you need to know what they are and how they work.

    Why ?

    Because what you measure gets managed. This is true in your personal life and business. You must track various website metrics to help your business reach new heights.

    In this guide, you’ll learn about the most important website metrics, why they’re important and how to track them to grow your brand.

    What are website metrics ?

    Your website is your digital headquarters.

    It’s not a static place. Instead, it’s a vibrant, interactive hub your visitors and customers can engage with daily.

    Every time a user interacts with your website, you can track what’s happening.

    Website metrics help you measure how much your visitors and customers interact with your website. 

    These engagement metrics help you understand what your visitors are doing, where they’re coming from, how they’re moving on your website and how long they stay. They can even give you insights into what their goals are.

    What are website metrics?

    If you aren’t tracking your website metrics, you won’t know how effective your website is.

    By paying close attention to your key metrics within a web analytics platform like Matomo, you’ll be able to see how well your marketing is doing and how your visitors are engaging so you can improve the user experience and increase conversions.

    16 website metrics to track

    Here are the top 16 website metrics you need to be tracking if you want to grow your business :

    1. Pageviews

    A pageview is the number of times a web page has been viewed. 

    Many pageviews can indicate a successful search engine optimisation (SEO) or marketing campaign — it can be used to show positive results for these initiatives.

    It can also help you determine various issues on individual pages. For instance, performance issues or poor website structure can cause visitors to get lost or confused while navigating your website.

    Screenshot example of the Matomo dashboard

    2. Average time on page

    Average time on a page is simply the time visitors spend on a specific page (not the entire website) ; tracking users’ time on various pages throughout your website can give you insights that can help you improve certain pages.

    If you get tons of traffic to a particular page, but the average time a visitor stays on that page is minimal, the content may need some work.

    Tracking this data can help determine if your website is engaging for your visitors or if you need to modify certain aspects to increase your visitors’ stay. Increasing the average time on the page will help boost your conversions and search engine rankings.

    3. Actions per visit

    Actions per visit is a key metric that tracks the average number of actions a visitor takes every time they visit your website. This data can help you track your audience engagement and the effectiveness of your content across your entire website.

    An action is any activity performed by your visitors on your website like :

    • Outlinks
    • Downloads
    • Page views
    • Internal site searches

    The higher your actions per visit, the more engaging your audience finds your website content. A side effect of increased actions is staying longer on the site and more likely to convert to your email list as a subscriber or pay for products as a customer.

    4. Bounce rate

    Like a bouncy ball, your website’s bounce rate measures how many users entered your site and “bounced” out without clicking on another page. This metric can be extremely helpful in determining user interest in your content. 

    You might be getting many visitors to your website, but if they “bounce” after visiting the first page they land on, that’s a great indicator that your content is not resonating with your audience.

    Remember, this metric should be taken with a grain of salt. 

    Your bounce rate may indicate that visitors are finding the exact information that they wanted and leaving pleased, so it’s not a black-and-white metric.

    For example, if you have a landing page with a high bounce rate, then that’s likely not a sign of a good user experience. But, if you have a knowledge base article and they just need to find some quick information, then it could be a good indicator.

    5. Conversions

    The first step in tracking conversions is defining what a conversion is for your website. 

    Do you want your audience to :

    • View a blog post
    • Purchase a product
    • Download an eBook
    • Sign up for a consultation call

    Determine what that conversion is and track how often users take that action on your website.

    This helps you understand if your marketing and content strategies are working toward your pre-defined conversion goal.

    Matomo track conversions.

    6. Conversion rate

    A conversion rate is the percentage of visits that triggered a conversion. Knowing this metric lets you plan, budget, and forecast future growth.

    For example, 5% of your website visitors take action and convert to customers. With this information, you can make better informed financial decisions regarding your marketing efforts on your website to help increase traffic and future conversions.

    While there are basic conversion rate benchmarks to strive toward, it ultimately depends on your goals and the specific conversions you decide to track that are best for your business. 

    That being said, Matomo has some best practices to help you optimise your conversion rates, no matter what conversion metric you are tracking.

    7. Exit rate

    While “bounce rate” and “exit rate” are similar, “exit rate” is the percentage of visits to a website that ended on a particular page.

    Knowing which pages have the highest percentage of visitors exiting your website gives you key information on the pages that may need to be improved.

    If you see that your “exit rate” is highest on pages before the checkout (or other CTA’s you have established), you will want to dive into what’s causing visitors to leave from that page. For example, maybe it’s the content, the copy or even a broken link.

    This is a great metric to help determine where you have breakdowns between you and your visitors. Improving your exit rate can help guide visitors through your website funnel more easily and boost your conversion rates. 

    Matomo track pageviews

    8. Top pages

    The top pages on your website are the pages that receive the most visits. Understanding what your top pages are can be crucial in planning and guiding your marketing strategies moving forward.

    Your top pages can help you determine the most engaging content for your audience. This can be extremely helpful in guiding your visitors to certain pages that other users find more valuable.

    It also helps you determine if you need to focus more attention on different parts of your website to increase user engagement in those areas.

    For example, maybe your most-viewed pages have less copy and more photos or videos. Understanding this lets you know that incorporating more media into other pages will boost future engagement.

    9. Traffic sources

    Your traffic sources are the channels that are driving visitors to your website. The four most common traffic sources are :

    • Direct Entry : Typing your website URL into their browser or visiting via a bookmark they saved
    • Websites/Referral : Clicking on a link to your site from another website
    • Search Engines : Using search engines (Google, Bing or Yahoo) to find your website
    • Campaigns : Visitors directed to your website through specific marketing campaigns, such as email newsletters, Google Ads, promotional links, etc.
    • Social Networks : Visitors accessing your website by clicking on links shared on social media platforms like Facebook, X (Twitter), LinkedIn, etc.

    Understanding where your visitors are coming from can help you focus your marketing efforts on the traffic sources with the highest conversion rates. 

    Suppose your email marketing campaign isn’t driving any traffic to your website, but your ad campaign is responsible for over 25% of your conversions. In that case, you might consider doubling your advertising efforts.

    10. Form average time spent

    Forms are a crucial part of your website’s marketing strategy. Forms can help you :

    • Learn more about your visitors
    • Gather feedback from your audience
    • Convert visitors into email subscribers
    • And more

    Form average time spent is the average amount of time a visitor spends on a specific form on your website. The time is calculated as the difference between the first interaction with a form field (for example, a field focus) and the last interaction with a form.

    Want to convert more visitors into leads ? Then, you need to understand your form analytics better. Learn more here.

    11. Play rate

    If you want to keep your audience engaged (and convert more visitors), you need to publish different types of media.

    But if your video or audio content isn’t performing well, then you’re wasting your time.

    That’s where play rate comes in. It’s calculated by analysing visitors who watched or listened to a specific media after they have visited a web page.

    With play rate, you can track any video, podcast, or audiobook plays.

    You can easily track it within Matomo’s Media Analytics. The best part ? This feature works out of the box, so you don’t need to configure it to start leveraging the analytics.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    12. Returning visitors

    Returning visitors are users who visit your website more than once over a specific time.

    You will want to measure the number of returning visitors to your website, as this information can give you additional insights into your marketing strategies, company branding and content.

    It can also help you better understand your customer base, giving you a clearer sense of their top desires and pain points.

    13. Device type

    Device type tracks the different devices visitors use to visit your website. These could be :

    • Tablets
    • Mobile phones
    • Desktop computers

    Knowing what your visitors are using to access your website can help you improve the overall user experience.

    For example, if 80% of your visitors use mobile phones, you could think about optimising your web pages to format with mobile devices. 

    Screenshot of Matomo dashboard

    14. Top exit pages

    Top exit pages are the pages that a visitor leaves your website from the most.

    Each web page will have a specific exit rate percentage based on how many people leave the website on a particular page.

    This can be quite helpful in understanding how visitors interact with your website. It can also help you uncover and fix any issues with your website you may not be aware of.

    For instance, one of your product pages has the highest exit rate on your website. By looking into why that is, you discover that your “Add to Cart” button isn’t functioning correctly, and your visitors can’t buy that particular product, so they exit out of frustration.

    15. Marketing attribution

    Marketing attribution (multi-touch attribution) helps you see which touchpoints have the greatest impact on conversions.

    Within Matomo, revenue attribution involves assigning credit for revenue across multiple touchpoints that contribute to a conversion.

    Matomo’s multi-touch attribution models use different weighting factors, like linear or time decay, to allocate credit to each touchpoint based on its influence.

    Matomo’s multi-touch attribution reports provide insights into how revenue is distributed across different touchpoints, marketing channels, campaigns, and actions. These reports allow you to analyse the contribution of each touchpoint to revenue generation and identify the most influential interactions in the customer journey.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    16. Event tracking

    Every website has multiple actions a user can perform called “events”. These could be downloading a template, submitting contact information, signing up for a newsletter or clicking a link.

    Tracking events can give you additional context into what your visitors are interested in or don’t care about. This allows you to target them better through those events, potentially creating new, unique conversions and boosting the growth of your business.

    It can also lead to discovering potential issues within your website if you notice visitors aren’t taking action on certain CTAs, such as broken links or lack of content on certain pages. By uncovering these issues, you can quickly fix them to increase your conversions.

    Matomo track events

    Start tracking your website metrics with Matomo today

    There’s much to consider when creating and running your website, such as the design, copy and flow. 

    While these are necessary, tracking your website’s data is one of the most important aspects of running a site. It’s crucial in helping you optimise your site’s performance and create a great experience for your visitors.

    Every interaction a visitor has on your site is unique and leaves valuable clues you can use to improve all aspects of your site experience. 

    Understanding what your visitors like, what website performance issues they’re running into and how they interact across your website is crucial to improving your marketing and sales efforts.

    While tracking this much data can feel overwhelming, having all your key metrics in one place and broken down into easy-to-understand benchmarks can help alleviate the stress and headache of data tracking. 

    That’s where a web analytics platform like Matomo comes in.

    With Matomo, you can easily track, store and analyse every piece of data on your website automatically to improve your site performance and user experience and drive conversions. 

    With Matomo, you can take back control with a platform that gives you 100% data ownership.

    Used on over 1 million websites in over 190 countries, Matomo gives you :

    • Accurate data (no data sampling)
    • Privacy-friendly and GDPR-compliant analytics
    • Open-source access to create a custom solution for you

    Try Matomo for free for 21 days now. No credit card required. 

  • How to Choose the Optimal Multi-Touch Attribution Model for Your Organisation

    13 mars 2023, par Erin — Analytics Tips

    If you struggle to connect the dots on your customer journeys, you are researching the correct solution. 

    Multi-channel attribution models allow you to better understand the users’ paths to conversion and identify key channels and marketing assets that assist them.

    That said, each attribution model has inherent limitations, which make the selection process even harder.

    This guide explains how to choose the optimal multi-touch attribution model. We cover the pros and cons of popular attribution models, main evaluation criteria and how-to instructions for model implementation. 

    Pros and Cons of Different Attribution Models 

    Types of Attribution Models

    First Interaction 

    First Interaction attribution model (also known as first touch) assigns full credit to the conversion to the first channel, which brought in a lead. However, it doesn’t report other interactions the visitor had before converting.

    Marketers, who are primarily focused on demand generation and user acquisition, find the first touch attribution model useful to evaluate and optimise top-of-the-funnel (ToFU). 

    Pros 

    • Reflects the start of the customer journey
    • Shows channels that bring in the best-qualified leads 
    • Helps track brand awareness campaigns

    Cons 

    • Ignores the impact of later interactions at the middle and bottom of the funnel 
    • Doesn’t provide a full picture of users’ decision-making process 

    Last Interaction 

    Last Interaction attribution model (also known as last touch) shifts the entire credit allocation to the last channel before conversion. But it doesn’t account for the contribution of all other channels. 

    If your focus is conversion optimization, the last-touch model helps you determine which channels, assets or campaigns seal the deal for the prospect. 

    Pros 

    • Reports bottom-of-the-funnel events
    • Requires minimal data and configurations 
    • Helps estimate cost-per-lead or cost-per-acquisition

    Cons 

    • No visibility into assisted conversions and prior visitor interactions 
    • Overemphasise the importance of the last channel (which can often be direct traffic) 

    Last Non-Direct Interaction 

    Last Non-Direct attribution excludes direct traffic from the calculation and assigns the full conversion credit to the preceding channel. For example, a paid ad will receive 100% of credit for conversion if a visitor goes directly to your website to buy a product. 

    Last Non-Direct attribution provides greater clarity into the bottom-of-the-funnel (BoFU). events. Yet, it still under-reports the role other channels played in conversion. 

    Pros 

    • Improved channel visibility, compared to Last-Touch 
    • Avoids over-valuing direct visits
    • Reports on lead-generation efforts

    Cons 

    • Doesn’t work for account-based marketing (ABM) 
    • Devalues the quality over quantity of leads 

    Linear Model

    Linear attribution model assigns equal credit for a conversion to all tracked touchpoints, regardless of their impact on the visitor’s decision to convert.

    It helps you understand the full conversion path. But this model doesn’t distinguish between the importance of lead generation activities versus nurturing touches.

    Pros 

    • Focuses on all touch points associated with a conversion 
    • Reflects more steps in the customer journey 
    • Helps analyse longer sales cycles

    Cons 

    • Doesn’t accurately reflect the varying roles of each touchpoint 
    • Can dilute the credit if too many touchpoints are involved 

    Time Decay Model 

    Time decay models assumes that the closer a touchpoint is to the conversion, the greater its influence. Pre-conversion touchpoints get the highest credit, while the first ones are ranked lower (5%-5%-10%-15%-25%-30%).

    This model better reflects real-life customer journeys. However, it devalues the impact of brand awareness and demand-generation campaigns. 

    Pros 

    • Helps track longer sales cycles and reports on each touchpoint involved 
    • Allows customising the half-life of decay to improve reporting 
    • Promotes conversion optimization at BoFu stages

    Cons 

    • Can prompt marketers to curtail ToFU spending, which would translate to fewer qualified leads at lower stages
    • Doesn’t reflect highly-influential events at earlier stages (e.g., a product demo request or free account registration, which didn’t immediately lead to conversion)

    Position-Based Model 

    Position-Based attribution model (also known as the U-shaped model) allocates the biggest credit to the first and the last interaction (40% each). Then distributes the remaining 20% across other touches. 

    For many marketers, that’s the preferred multi-touch attribution model as it allows optimising both ToFU and BoFU channels. 

    Pros 

    • Helps establish the main channels for lead generation and conversion
    • Adds extra layers of visibility, compared to first- and last-touch attribution models 
    • Promotes budget allocation toward the most strategic touchpoints

    Cons 

    • Diminishes the importance of lead nurturing activities as more credit gets assigned to demand-gen and conversion-generation channels
    • Limited flexibility since it always assigns a fixed amount of credit to the first and last touchpoints, and the remaining credit is divided evenly among the other touchpoints

    How to Choose the Right Multi-Touch Attribution Model For Your Business 

    If you’re deciding which attribution model is best for your business, prepare for a heated discussion. Each one has its trade-offs as it emphasises or devalues the role of different channels and marketing activities.

    To reach a consensus, the best strategy is to evaluate each model against three criteria : Your marketing objectives, sales cycle length and data availability. 

    Marketing Objectives 

    Businesses generate revenue in many ways : Through direct sales, subscriptions, referral fees, licensing agreements, one-off or retainer services. Or any combination of these activities. 

    In each case, your marketing strategy will look different. For example, SaaS and direct-to-consumer (DTC) eCommerce brands have to maximise both demand generation and conversion rates. In contrast, a B2B cybersecurity consulting firm is more interested in attracting qualified leads (as opposed to any type of traffic) and progressively nurturing them towards a big-ticket purchase. 

    When selecting a multi-touch attribution model, prioritise your objectives first. Create a simple scoreboard, where your team ranks various channels and campaign types you rely on to close sales. 

    Alternatively, you can survey your customers to learn how they first heard about your company and what eventually triggered their conversion. Having data from both sides can help you cross-validate your assumptions and eliminate some biases. 

    Then consider which model would best reflect the role and importance of different channels in your sales cycle. Speaking of which….

    Sales Cycle Length 

    As shoppers, we spend less time deciding on a new toothpaste brand versus contemplating a new IT system purchase. Factors like industry, business model (B2C, DTC, B2B, B2BC), and deal size determine the average cycle length in your industry. 

    Statistically, low-ticket B2C sales can happen within just several interactions. The average B2B decision-making process can have over 15 steps, spread over several months. 

    That’s why not all multi-touch attribution models work equally well for each business. Time-decay suits better B2B companies, while B2C usually go for position-based or linear attribution. 

    Data Availability 

    Businesses struggle with multi-touch attribution model implementation due to incomplete analytics data. 

    Our web analytics tool captures more data than Google Analytics. That’s because we rely on a privacy-focused tracking mechanism, which allows you to collect analytics without showing a cookie consent banner in markets outside of Germany and the UK. 

    Cookie consent banners are mandatory with Google Analytics. Yet, almost 40% of global consumers reject it. This results in gaps in your analytics and subsequent inconsistencies in multi-touch attribution reports. With Matomo, you can compliantly collect more data for accurate reporting. 

    Some companies also struggle to connect collected insights to individual shoppers. With Matomo, you can cross-attribute users across browning sessions, using our visitors’ tracking feature

    When you already know a user’s identifier (e.g., full name or email address), you can track their on-site behaviours over time to better understand how they interact with your content and complete their purchases. Quick disclaimer, though, visitors’ tracking may not be considered compliant with certain data privacy laws. Please consult with a local authority if you have doubts. 

    How to Implement Multi-Touch Attribution

    Multi-touch attribution modelling implementation is like a “seek and find” game. You have to identify all significant touchpoints in your customers’ journeys. And sometimes also brainstorm new ways to uncover the missing parts. Then figure out the best way to track users’ actions at those stages (aka do conversion and events tracking). 

    Here’s a step-by-step walkthrough to help you get started. 

    Select a Multi-Touch Attribution Tool 

    The global marketing attribution software is worth $3.1 billion. Meaning there are plenty of tools, differing in terms of accuracy, sophistication and price.

    To make the right call prioritise five factors :

    • Available models : Look for a solution that offers multiple options and allows you to experiment with different modelling techniques or develop custom models. 
    • Implementation complexity : Some providers offer advanced data modelling tools for creating custom multi-touch attribution models, but offer few out-of-the-box modelling options. 
    • Accuracy : Check if the shortlisted tool collects the type of data you need. Prioritise providers who are less dependent on third-party cookies and allow you to identify repeat users. 
    • Your marketing stack : Some marketing attribution tools come with useful add-ons such as tag manager, heatmaps, form analytics, user session recordings and A/B testing tools. This means you can collect more data for multi-channel modelling with them instead of investing in extra software. 
    • Compliance : Ensure that the selected multi-attribution analytics software wouldn’t put you at risk of GDPR non-compliance when it comes to user privacy and consent to tracking/analysis. 

    Finally, evaluate the adoption costs. Free multi-channel analytics tools come with data quality and consistency trade-offs. Premium attribution tools may have “hidden” licensing costs and bill you for extra data integrations. 

    Look for a tool that offers a good price-to-value ratio (i.e., one that offers extra perks for a transparent price). 

    Set Up Proper Data Collection 

    Multi-touch attribution requires ample user data. To collect the right type of insights you need to set up : 

    • Website analytics : Ensure that you have all tracking codes installed (and working correctly !) to capture pageviews, on-site actions, referral sources and other data points around what users do on page. 
    • Tags : Add tracking parameters to monitor different referral channels (e.g., “facebook”), campaign types (e.g., ”final-sale”), and creative assets (e.g., “banner-1”). Tags help you get a clearer picture of different touchpoints. 
    • Integrations : To better identify on-site users and track their actions, you can also populate your attribution tool with data from your other tools – CRM system, A/B testing app, etc. 

    Finally, think about the ideal lookback window — a bounded time frame you’ll use to calculate conversions. For example, Matomo has a default windows of 7, 30 or 90 days. But you can configure a custom period to better reflect your average sales cycle. For instance, if you’re selling makeup, a shorter window could yield better results. But if you’re selling CRM software for the manufacturing industry, consider extending it.

    Configure Goals and Events 

    Goals indicate your main marketing objectives — more traffic, conversions and sales. In web analytics tools, you can measure these by tracking specific user behaviours. 

    For example : If your goal is lead generation, you can track :

    • Newsletter sign ups 
    • Product demo requests 
    • Gated content downloads 
    • Free trial account registration 
    • Contact form submission 
    • On-site call bookings 

    In each case, you can set up a unique tag to monitor these types of requests. Then analyse conversion rates — the percentage of users who have successfully completed the action. 

    To collect sufficient data for multi-channel attribution modelling, set up Goal Tracking for different types of touchpoints (MoFU & BoFU) and asset types (contact forms, downloadable assets, etc). 

    Your next task is to figure out how users interact with different on-site assets. That’s when Event Tracking comes in handy. 

    Event Tracking reports notify you about specific actions users take on your website. With Matomo Event Tracking, you can monitor where people click on your website, on which pages they click newsletter subscription links, or when they try to interact with static content elements (e.g., a non-clickable banner). 

    Using in-depth user behavioural reports, you can better understand which assets play a key role in the average customer journey. Using this data, you can localise “leaks” in your sales funnel and fix them to increase conversion rates.

    Test and Validated the Selected Model 

    A common challenge of multi-channel attribution modelling is determining the correct correlation and causality between exposure to touchpoints and purchases. 

    For example, a user who bought a discounted product from a Facebook ad would act differently than someone who purchased a full-priced product via a newsletter link. Their rate of pre- and post-sales exposure will also differ a lot — and your attribution model may not always accurately capture that. 

    That’s why you have to continuously test and tweak the selected model type. The best approach for that is lift analysis. 

    Lift analysis means comparing how your key metrics (e.g., revenue or conversion rates) change among users who were exposed to a certain campaign versus a control group. 

    In the case of multi-touch attribution modelling, you have to monitor how your metrics change after you’ve acted on the model recommendations (e.g., invested more in a well-performing referral channel or tried a new brand awareness Twitter ad). Compare the before and after ROI. If you see a positive dynamic, your model works great. 

    The downside of this approach is that you have to invest a lot upfront. But if your goal is to create a trustworthy attribution model, the best way to validate is to act on its suggestions and then test them against past results. 

    Conclusion

    A multi-touch attribution model helps you measure the impact of different channels, campaign types, and marketing assets on metrics that matter — conversion rate, sales volumes and ROI. 

    Using this data, you can invest budgets into the best-performing channels and confidently experiment with new campaign types. 

    As a Matomo user, you also get to do so without breaching customers’ privacy or compromising on analytics accuracy.

    Start using accurate multi-channel attribution in Matomo. Get your free 21-day trial now. No credit card required.

  • Capture from multiple streams concurrently, best way to do it and how to reduce CPU usage

    19 juin 2019, par DRONE_6969

    I am currently in the process of writing an application that will capture a lot of RTSP streams(in my case its 12) and display it on the QT widget. The problem arouses when I am going beyond around 6-7 streams, the CPU usage spikes and there is visible stutter.

    The reason why I think that it is not QT draw function is because I have done some checking to measure how much time it takes to draw an incoming image from camera and just sample images I had, it is always a lot less than 33 milliseconds(even if there are 12 widgets being updated).

    I also just ran opencv capture method without drawing and got pretty much the same CPU consumption as if I was drawing the frames (lost like 10% CPU at most and GPU usage went to zero).

    IMPORTANT : I am using RTSP stream which is a h264 stream.

    IF IT MATTERS MY SPECS :

    Intel Core i7-6700 @ 3.40GHZ(8 CPUS)
    Memory : 16gb
    GPU : Intel HD Graphics 530

    (Also I ran my code on a computer with dedicated Graphics card, it did eliminate some stutter but CPU usage is still pretty high)

    I am currently using OPENCV 4.1.0 with GSTREAMER enabled and built, I also have the OPENCV-WORLD version, there is no difference in performance.

    I have created a special class called Camera that holds its frame size constraints and various control functions as well stream function. The stream function is being ran on a separate thread, whenever stream() function is done with current frame it sends ready Mat via onNewFrame event I created which converts to QPixmap and updates widget’s lastImage variable. This way I can update image in a more thread safe way.

    I have tried to manipulate those VideoCapture.set() values, but it didn’t really help.

    This is my stream function (Ignore the bool return, it doesn’t do anything it is a remnant from couple of minutes ago when I was trying to use std::async) :

    bool Camera::stream() {
       /* This function is meant to run on a separate thread and fill up the buffer independantly of
       main stream thread */
       //cv::setNumThreads(100);
       /* Rules for these slightly changed! */
       Mat pre;  // Grab initial undoctored frame
       //pre = Mat::zeros(size, CV_8UC1);
       Mat frame; // Final modified frame
       frame = Mat::zeros(size, CV_8UC1);
       if (!pre.isContinuous()) pre = pre.clone();

       ipCam.open(streamUrl, CAP_FFMPEG);


       while (ipCam.isOpened() && capture) {
           // If camera is opened wel need to capture and process the frame
           try {
               auto start = std::chrono::system_clock::now();

               ipCam >> pre;

               if (pre.empty()) {
                   /* Check for blank frame, return error if there is a blank frame*/
                   cerr << id << ": ERROR! blank frame grabbed\n";
                   for (FrameListener* i : clients) {
                       i->onNotification(1); // Notify clients about this shit
                   }
                   break;
               }

               else {
                   // Only continue if frame not empty

                   if (pre.cols != size.width && pre.rows != size.height) {
                       resize(pre, frame, size);
                       pre.release();
                   }
                   else {
                       frame = pre;
                   }

                   dPacket* pack = new dPacket{id,&frame};
                   for (auto i : clients) {
                       i->onPNewFrame(pack);
                   }
                   frame.release();
                   delete pack;
               }
           }

           catch (int e) {
               cout << endl << "-----Exception during capture process! CODE " << e << endl;
           }
           // End camera manipulations
       }

       cout << "Camera timed out, or connection is closed..." << endl;
       if (tryResetConnection) {
           cout << "Reconnection flag is set, retrying after 3 seconds..." << endl;
           for (FrameListener* i : clients) {
               i->onNotification(-1); // Notify clients about this shit
           }
           this_thread::sleep_for(chrono::milliseconds(3000));
           stream();
       }

       return true;
    }

    This is my onPNewFrame function. The conversion is still being done on camera’s thread because it was called within stream() and therefore is within that scope(and I also checked) :

    void GLWidget::onPNewFrame(dPacket* inPack) {
       lastFlag = 0;

       if (bufferEnabled) {
           buffer.push(QPixmap::fromImage(toQImageFromPMat(inPack->frame)));
       }
       else {
           if (playing) {
               /* Only process if this widget is playing */
               frameProcessing = true;
               lastImage.convertFromImage(toQImageFromPMat(inPack->frame));
               frameProcessing = false;
           }
       }

       if (lastFlag != -1 && !lastImage.isNull()) {
           connecting = false;
       }
       else {
           connecting = true;
       }
    }

    This is my Mat to QImage :

    QImage GLWidget::toQImageFromPMat(cv::Mat* mat) {



       return QImage(mat->data, mat->cols, mat->rows, QImage::Format_RGB888).rgbSwapped();

    NOTE : not converting does not result in CPU boost (at least not a significant one).

    Minimal verifiable example

    This program is large. I am going to paste GLWidget.cpp and GLWidget.h as well as Camera.h and Camera.cpp. You can put GLWidget into anything just as long as you spawn more than 6 of it. Camera relies on the CamUtils, but it is possible to just paste url in videocapture

    I also supplied CamUtils, just in case

    Camera.h :

    #pragma once
    #include <iostream>
    #include <vector>
    #include <fstream>
    #include <map>
    #include <string>
    #include <sstream>
    #include <algorithm>
    #include "FrameListener.h"
    #include
    #include <thread>
    #include "CamUtils.h"
    #include <ctime>
    #include "dPacket.h"

    using namespace std;
    using namespace cv;

    class Camera
    {

       /*
           CLEANED UP!
           Camera now is only responsible for streaming and echoing captured frames.
           Frames are now wrapped into dPacket struct.
       */


    private:
       string id;
       vector clients;
       VideoCapture ipCam;
       string streamUrl;
       Size size;
       bool tryResetConnection = false;

       //TODO: Remove these as they are not going to be used going on:
       bool isPlaying = true;
       bool capture = true;

       //SECRET FEATURES:
       bool detect = false;


    public:
       Camera(string url, int width = 480, int height = 240, bool detect_=false);
       bool stream();
       void setReconnectable(bool newReconStatus);
       void addListener(FrameListener* client);
       vector<bool> getState();    // Returns current state: vector[0] stream state; vector[1] stream state; TODO: Remove this as this is no longer should control behaviour
       void killStream();
       bool getReconnectable();
    };

    </bool></ctime></thread></algorithm></sstream></string></map></fstream></vector></iostream>

    Camera.cpp

    #include "Camera.h"


    Camera::Camera(string url, int width, int height, bool detect_) // Default 240p
    {
       streamUrl = url; // Prepare url
       size = Size(width, height);
       detect = detect_;

    }

    void Camera::addListener(FrameListener* client) {
       clients.push_back(client);
    }


    /*
                   TEST CAMERAS(Paste into cameras.dViewer):
                   {"id":"96a73796-c129-46fc-9c01-40acd8ed7122","ip":"176.57.73.231","password":"null","username":"null"},
                   {"id":"96a73796-c129-46fc-9c01-40acd8ed7122","ip":"176.57.73.231","password":"null","username":"null"},
                   {"id":"96a73796-c129-46fc-9c01-40acd8ed7144","ip":"172.20.101.13","password":"admin","username":"root"}
                   {"id":"96a73796-c129-46fc-9c01-40acd8ed7144","ip":"172.20.101.13","password":"admin","username":"root"}

    */



    bool Camera::stream() {
       /* This function is meant to run on a separate thread and fill up the buffer independantly of
       main stream thread */
       //cv::setNumThreads(100);
       /* Rules for these slightly changed! */
       Mat pre;  // Grab initial undoctored frame
       //pre = Mat::zeros(size, CV_8UC1);
       Mat frame; // Final modified frame
       frame = Mat::zeros(size, CV_8UC1);
       if (!pre.isContinuous()) pre = pre.clone();

       ipCam.open(streamUrl, CAP_FFMPEG);

       while (ipCam.isOpened() &amp;&amp; capture) {
           // If camera is opened wel need to capture and process the frame
           try {
               auto start = std::chrono::system_clock::now();

               ipCam >> pre;

               if (pre.empty()) {
                   /* Check for blank frame, return error if there is a blank frame*/
                   cerr &lt;&lt; id &lt;&lt; ": ERROR! blank frame grabbed\n";
                   for (FrameListener* i : clients) {
                       i->onNotification(1); // Notify clients about this shit
                   }
                   break;
               }

               else {
                   // Only continue if frame not empty

                   if (pre.cols != size.width &amp;&amp; pre.rows != size.height) {
                       resize(pre, frame, size);
                       pre.release();
                   }
                   else {
                       frame = pre;
                   }

                   auto end = std::chrono::system_clock::now();
                   std::time_t ts = std::chrono::system_clock::to_time_t(end);
                   dPacket* pack = new dPacket{ id,&amp;frame};
                   for (auto i : clients) {
                       i->onPNewFrame(pack);
                   }
                   frame.release();
                   delete pack;
               }
           }

           catch (int e) {
               cout &lt;&lt; endl &lt;&lt; "-----Exception during capture process! CODE " &lt;&lt; e &lt;&lt; endl;
           }
           // End camera manipulations
       }

       cout &lt;&lt; "Camera timed out, or connection is closed..." &lt;&lt; endl;
       if (tryResetConnection) {
           cout &lt;&lt; "Reconnection flag is set, retrying after 3 seconds..." &lt;&lt; endl;
           for (FrameListener* i : clients) {
               i->onNotification(-1); // Notify clients about this shit
           }
           this_thread::sleep_for(chrono::milliseconds(3000));
           stream();
       }

       return true;
    }


    void Camera::killStream(){
       tryResetConnection = false;
       capture = false;
       ipCam.release();
    }

    void Camera::setReconnectable(bool reconFlag) {
       tryResetConnection = reconFlag;
    }

    bool Camera::getReconnectable() {
       return tryResetConnection;
    }

    vector<bool> Camera::getState() {
       vector<bool> states;
       states.push_back(isPlaying);
       states.push_back(ipCam.isOpened());
       return states;
    }



    </bool></bool>

    GLWidget.h :

    #ifndef GLWIDGET_H
    #define GLWIDGET_H

    #include <qopenglwidget>
    #include <qmouseevent>
    #include "FrameListener.h"
    #include "Camera.h"
    #include "FrameListener.h"
    #include
    #include "Camera.h"
    #include "CamUtils.h"
    #include
    #include "dPacket.h"
    #include <chrono>
    #include <ctime>
    #include
    #include "FullScreenVideo.h"
    #include <qmovie>
    #include "helper.h"
    #include <iostream>
    #include <qpainter>
    #include <qtimer>

    class Helper;

    class GLWidget : public QOpenGLWidget, public FrameListener
    {
       Q_OBJECT

    public:
       GLWidget(std::string camId, CamUtils *cUtils, int width, int height, bool denyFullScreen_ = false, bool detectFlag_=false, QWidget* parent = nullptr);
       void killStream();
       ~GLWidget();

    public slots:
       void animate();
       void setBufferEnabled(bool setState);
       void setCameraRetryConnection(bool setState);
       void GLUpdate();            // Call to update the widget
       void onRightClickMenu(const QPoint&amp; point);

    protected:
       void paintEvent(QPaintEvent* event) override;
       void onPNewFrame(dPacket* frame);
       void onNotification(int alert_code);


    private:
       // Objects and resourses
       Helper* helper;
       Camera* cam;
       CamUtils* camUtils;
       QTimer* timer; // Keep track of update
       QPixmap lastImage;
       QMovie* connMov;
       QMovie* test;

       QPixmap logo;

       // Control fields
       int width;
       int height;
       int camUtilsAddr;
       int elapsed;
       std::thread* camThread;
       std::string camId;
       bool denyFullScreen = false;
       bool playing = true;
       bool streaming = true;
       bool debug = false;
       bool connecting = true;
       int lastFlag = 0;


       // Debug fields
       std::chrono::high_resolution_clock::time_point lastFrameAt;
       std::chrono::high_resolution_clock::time_point now;
       std::chrono::duration<double> painTime; // time took to draw last frame

       //Buffer stuff
       std::queue<qpixmap> buffer;
       bool bufferEnabled = false;
       bool initialBuffer = false;
       bool buffering = true;
       bool frameProcessing = false;



       //Functions
       QImage toQImageFromPMat(cv::Mat* inFrame);
       void mousePressEvent(QMouseEvent* event) override;
       void drawImageGLLatest(QPainter* painter, QPaintEvent* event, int elapsed);
       void drawOnPaused(QPainter* painter, QPaintEvent* event, int elapsed);
       void drawOnStatus(int statusFlag, QPainter* painter, QPaintEvent* event, int elapsed);
    };

    #endif

    </qpixmap></double></qtimer></qpainter></iostream></qmovie></ctime></chrono></qmouseevent></qopenglwidget>

    GLWidget.cpp :

    #include "glwidget.h"
    #include <future>


    FullScreenVideo* fullScreen;

    GLWidget::GLWidget(std::string camId_, CamUtils* cUtils, int width_, int height_,  bool denyFullScreen_, bool detectFlag_, QWidget* parent)
       : QOpenGLWidget(parent), helper(helper)
    {
       cout &lt;&lt; "Player for CAMERA " &lt;&lt; camId_ &lt;&lt; endl;

       /* Underlying properties */
       camUtils = cUtils;
       cout &lt;&lt; "GLWidget Incoming CamUtils addr " &lt;&lt; camUtils &lt;&lt; endl;
       cout &lt;&lt; "GLWidget Set CamUtils addr " &lt;&lt; camUtils &lt;&lt; endl;
       camId = camId_;
       elapsed = 0;
       width = width_ + 5;
       height = height_ + 5;
       helper = new Helper();
       setFixedSize(width, height);
       denyFullScreen = denyFullScreen_;

       /* Camera capture thread */
       cam = new Camera(camUtils->getCameraStreamURL(camId), width_, height_, detectFlag_);
       cam->addListener(this);

       /* Sync states */
       vector<bool> initState = cam->getState();
       playing = initState[0];
       streaming = initState[1];
       cout &lt;&lt; "Initial states: " &lt;&lt; playing &lt;&lt; " " &lt;&lt; streaming &lt;&lt; endl;
       camThread = new std::thread(&amp;Camera::stream, cam);
       cout &lt;&lt; "================================================" &lt;&lt; endl;

       // Right click set up
       setContextMenuPolicy(Qt::CustomContextMenu);


       /* Loading gif */
       connMov = new QMovie("establishingConnection.gif");
       connMov->start();
       QString url = R"(RLC-logo.png)";
       logo = QPixmap(url);
       QTimer* timer = new QTimer(this);
       connect(timer, SIGNAL(timeout()), this, SLOT(GLUpdate()));
       timer->start(1000/30);
       playing = true;

    }

    /* SYSTEM */
    void GLWidget::animate()
    {
       elapsed = (elapsed + qobject_cast(sender())->interval()) % 1000;
       std::cout &lt;&lt; elapsed &lt;&lt; "\n";
    }


    void GLWidget::GLUpdate() {
       /* Process descisions before update call */
       if (bufferEnabled) {
           /* Process buffer before update */
           now = chrono::high_resolution_clock::now();
           std::chrono::duration timeSinceLastUpdate = now - lastFrameAt;
           if (timeSinceLastUpdate.count() > 25) {
               if (buffer.size() > 1 &amp;&amp; playing) {
                   lastImage.swap(buffer.front());
                   buffer.pop();
                   lastFrameAt = chrono::high_resolution_clock::now();
               }
           }
           //update(); // Update
       }
       else {
           /* No buffer */
       }
       repaint();
    }


    /* EVENTS */
    void GLWidget::onRightClickMenu(const QPoint&amp; point) {
       cout &lt;&lt; "Right click request got" &lt;&lt; endl;

       QPoint globPos = this->mapToGlobal(point);
       QMenu myMenu;

       if (!denyFullScreen) {
           myMenu.addAction("Open Full Screen");
       }
       myMenu.addAction("Toggle Debug Info");


       QAction* selected = myMenu.exec(globPos);

       if (selected) {
           string optiontxt = selected->text().toStdString();

           if (optiontxt == "Open Full Screen") {
               cout &lt;&lt; "Chose to open full screen of " &lt;&lt; camId &lt;&lt; endl;
               fullScreen = new FullScreenVideo(bufferEnabled, this);
               fullScreen->setUpView(camUtils, camId);
               fullScreen->show();
               playing = false;
           }

           if (optiontxt == "Toggle Debug Info") {
               cout &lt;&lt; "Chose to toggle debug of " &lt;&lt; camId &lt;&lt; endl;
               debug = !debug;
           }
       }
       else {
           cout &lt;&lt; "Chose nothing!" &lt;&lt; endl;
       }


    }



    void GLWidget::onPNewFrame(dPacket* inPack) {
       lastFlag = 0;

       if (bufferEnabled) {
           buffer.push(QPixmap::fromImage(toQImageFromPMat(inPack->frame)));
       }
       else {
           if (playing) {
               /* Only process if this widget is playing */
               frameProcessing = true;
               lastImage.convertFromImage(toQImageFromPMat(inPack->frame));
               frameProcessing = false;
           }
       }

       if (lastFlag != -1 &amp;&amp; !lastImage.isNull()) {
           connecting = false;
       }
       else {
           connecting = true;
       }
    }


    void GLWidget::onNotification(int alert) {
       lastFlag = alert;  
    }


    /* Paint events*/


    void GLWidget::paintEvent(QPaintEvent* event)
    {
       QPainter painter(this);

           if (lastFlag != 0 || connecting) {
               drawOnStatus(lastFlag, &amp;painter, event, elapsed);
           }
           else {

               /* Actual frame drawing */
               if (playing) {
                   if (!frameProcessing) {
                       drawImageGLLatest(&amp;painter, event, elapsed);
                   }
               }
               else {
                   drawOnPaused(&amp;painter, event, elapsed);
               }
           }
       painter.end();

    }


    /* DRAWING STUFF */

    void GLWidget::drawOnStatus(int statusFlag, QPainter* bgPaint, QPaintEvent* event, int elapsed) {

       QString str;
       QFont font("times", 15);
       bgPaint->eraseRect(QRect(0, 0, width, height));
       if (!lastImage.isNull()) {
           bgPaint->drawPixmap(QRect(0, 0, width, height), lastImage);
       }
       /* Test background painting */
       if (connecting) {
           string k = "Connecting to " + camUtils->getIp(camId);
           str.append(k.c_str());
       }
       else {
           switch (statusFlag) {
           case 1:
               str = "Blank frame received...";
               break;

           case -1:
               if (cam->getReconnectable()) {
                   str = "Connection lost, will try to reconnect.";
                   bgPaint->setOpacity(0.3);
               }
               else {
                   str = "Connection lost...";
                   bgPaint->setOpacity(0.3);
               }

               break;
           }
       }

       bgPaint->drawPixmap(QRect(0, 0, width, height), QPixmap::fromImage(connMov->currentImage()));
       bgPaint->setPen(Qt::red);
       bgPaint->setFont(font);
       QFontMetrics fm(font);
       const QRect kek(0, 0, fm.width(str), fm.height());
       QRect bound;
       bgPaint->setOpacity(1);
       bgPaint->drawText(bgPaint->viewport().width()/2 - kek.width()/2, bgPaint->viewport().height()/2 - kek.height(), str);

       bgPaint->drawPixmap(bgPaint->viewport().width() / 2 - logo.width()/2, height - logo.width() - 15, logo);

    }



    void GLWidget::drawOnPaused(QPainter* painter, QPaintEvent* event, int elapsed) {
       painter->eraseRect(0, 0, width, height);
       QFont font = painter->font();
       font.setPointSize(18);
       painter->setPen(Qt::red);
       QFontMetrics fm(font);
       QString str("Paused");
       painter->drawPixmap(QRect(0, 0, width, height),lastImage);
       painter->drawText(QPoint(painter->viewport().width() - fm.width(str), 50), str);

       if (debug) {
           QFont font = painter->font();
           font.setPointSize(25);
           painter->setPen(Qt::red);
           string camMess = "CAMID: " + camId;
           QString mess(camMess.c_str());
           string camIp = "IP: " + camUtils->getIp(camId);
           QString ipMess(camIp.c_str());
           QString bufferSize("Buffer size: " + QString::number(buffer.size()));
           QString lastFrameText("Last frame draw time: " + QString::number(painTime.count()) + "s");
           painter->drawText(QPoint(10, 50), mess);
           painter->drawText(QPoint(10, 60), ipMess);
           QString bufferState;
           if (bufferEnabled) {
               bufferState = QString("Experimental BUFFER is enabled!");
               QString currentBufferSize("Current buffer load: " + QString::number(buffer.size()));
               painter->drawText(QPoint(10, 80), currentBufferSize);
           }
           else {
               bufferState = QString("Experimental BUFFER is disabled!");
           }
           painter->drawText(QPoint(10, 70), bufferState);
           painter->drawText(QPoint(10, height - 25), lastFrameText);
       }
    }


    void GLWidget::drawImageGLLatest(QPainter* painter, QPaintEvent* event, int elapsed) {
       auto start = chrono::high_resolution_clock::now();
       painter->drawPixmap(QRect(0, 0, width, height), lastImage);
       if (debug) {
           QFont font = painter->font();
           font.setPointSize(25);
           painter->setPen(Qt::red);
           string camMess = "CAMID: " + camId;
           QString mess(camMess.c_str());
           string camIp = "IP: " + camUtils->getIp(camId);
           QString ipMess(camIp.c_str());
           QString bufferSize("Buffer size: " + QString::number(buffer.size()));
           QString lastFrameText("Last frame draw time: " + QString::number(painTime.count()) + "s");
           painter->drawText(QPoint(10, 50), mess);
           painter->drawText(QPoint(10, 60), ipMess);
           QString bufferState;
           if(bufferEnabled){
               bufferState = QString("Experimental BUFFER is enabled!");
               QString currentBufferSize("Current buffer load: " + QString::number(buffer.size()));
               painter->drawText(QPoint(10,80), currentBufferSize);
           }
           else {
               bufferState = QString("Experimental BUFFER is disabled!");
               QString currentBufferSize("Current buffer load: " + QString::number(buffer.size()));
               painter->drawText(QPoint(10, 80), currentBufferSize);
           }
           painter->drawText(QPoint(10, 70), bufferState);
           painter->drawText(QPoint(10, height - 25), lastFrameText);

       }
       auto end = chrono::high_resolution_clock::now();
       painTime = end - start;
    }



    /* END DRAWING STUFF */



    /* UI EVENTS */

    void GLWidget::mousePressEvent(QMouseEvent* e) {

       if (e->button() == Qt::LeftButton) {
           if (fullScreen == nullptr || !fullScreen->isVisible()) { // Do not unpause if window is opened
               playing = !playing;
           }
       }

       if (e->button() == Qt::RightButton) {
           onRightClickMenu(e->pos());
       }
    }



    /* Utilities */
    QImage GLWidget::toQImageFromPMat(cv::Mat* mat) {



       return QImage(mat->data, mat->cols, mat->rows, QImage::Format_RGB888).rgbSwapped();



    }

    /* State control */

    void GLWidget::killStream() {
       cam->killStream();
       camThread->join();
    }

    void GLWidget::setBufferEnabled(bool newBufferState) {
       cout &lt;&lt; "Player: " &lt;&lt; camId &lt;&lt; ", buffer state updated: " &lt;&lt; newBufferState &lt;&lt; endl;
       bufferEnabled = newBufferState;
       buffer.empty();
    }

    void GLWidget::setCameraRetryConnection(bool newState) {
       cam->setReconnectable(newState);
    }

    /* Destruction */
    GLWidget::~GLWidget() {
       cam->killStream();
       camThread->join();
    }
    </bool></future>

    CamUtils.h :

    #pragma once
    #include <iostream>
    #include <vector>
    #include <fstream>
    #include <map>
    #include <string>
    #include <sstream>
    #include <algorithm>
    #include <nlohmann></nlohmann>json.hpp>

    using namespace std;
    using json = nlohmann::json;

    class CamUtils
    {
    private:

       string camDb = "cameras.dViewer";
       map> cameraList; // Legacy
       json cameras;
       ofstream dbFile;
       bool dbExists(); // Always hard coded

       /* Old IMPLEMENTATION */
       void writeLineToDb_(const string&amp; content, bool append = false);
       void loadCameras_();

       /* JSON based */
       void loadCameras();

    public:
       CamUtils();
       string generateRandomString(size_t length);
       string getCameraStreamURL(string cameraId) const;
       string saveCamera(string ip, string username, string pass); // Return generated id
       vector<string> listAllCameraIds();
       string getIp(string cameraId);
    };


    </string></algorithm></sstream></string></map></fstream></vector></iostream>

    CamUtils.cpp :

    #include "CamUtils.h"
    #pragma comment(lib, "rpcrt4.lib")  // UuidCreate - Minimum supported OS Win 2000
    #include
    #include <iostream>

    CamUtils::CamUtils()
    {
       if (!dbExists()) {
           ofstream dbFile;
           dbFile.open(camDb);
           cameras["cameras"] = json::array();
           dbFile &lt;&lt; cameras &lt;&lt; std::endl;
           dbFile.close();

       }
       else {
           loadCameras();
       }
    }




    vector<string> CamUtils::listAllCameraIds() {
       vector<string> ids;
       cout &lt;&lt; "IN LIST " &lt;&lt; endl;
       for (auto&amp; cam : cameras["cameras"]) {
           ids.push_back(cam["id"].get<string>());
           //cout &lt;&lt; cam["id"].get<string>() &lt;&lt; std::endl;
       }
       return ids;
    }

    string CamUtils::getIp(string id) {
       vector<string> camDetails = cameraList[id];
       string ip = "NO IP WILL DISPLAYED UNTIL I FIGURE OUT A BUG";
       for (auto&amp; cam : cameras["cameras"]) {
           if (id == cam["id"]) {
               ip = cam["ip"].get<string>();
           }
       }

       return ip;
    }

    string CamUtils::getCameraStreamURL(string id) const {
       string url = "err"; // err is the default, it will be overwritten in case id is found, dont forget to check for it

       for (auto&amp; cam : cameras["cameras"]) {
           if (id == cam["id"]) {
               if (cam["username"].get<string>() == "null") {
                   url = "rtsp://" + cam["ip"].get<string>() + ":554/axis-media/media.amp?tcp";
               }
               else {
                   url = "rtsp://" + cam["username"].get<string>() + ":" + cam["password"].get<string>() + "@" + cam["ip"].get<string>() + ":554/axis-media/media.amp?streamprofile=720_30";
               }
           }
       }

       return url;  // Dont forget to check for err when using this shit
    }


    string CamUtils::saveCamera(string ip, string username, string password) {
       UUID uid;
       UuidCreate(&amp;uid);
       char* str;
       UuidToStringA(&amp;uid, (RPC_CSTR*)&amp;str);
       string id = str;
       cout &lt;&lt; "GEN: " &lt;&lt; id &lt;&lt; endl;
       json cam = json({}); //Create emtpy object
       cam["id"] = id;
       cam["ip"] = ip;
       cam["username"] = username;
       cam["password"] = password;
       cameras["cameras"].push_back(cam);
       std::ofstream out(camDb);
       out &lt;&lt; cameras &lt;&lt; std::endl;
       cout &lt;&lt; cameras["cameras"] &lt;&lt; endl;

       cout &lt;&lt; "Saved camera as " &lt;&lt; id &lt;&lt; endl;
       return id;
    }


    bool CamUtils::dbExists() {
       ifstream dbFile(camDb);
       return (bool)dbFile;
    }





    void CamUtils::loadCameras() {
       cout &lt;&lt; "Load call" &lt;&lt; endl;
       ifstream dbFile(camDb);
       string line;
       string wholeFile;

       while (std::getline(dbFile, line)) {
           cout &lt;&lt; line &lt;&lt; endl;
           wholeFile += line;
       }
       try {
           cameras = json::parse(wholeFile);
           //cout &lt;&lt; cameras["cameras"] &lt;&lt; endl;

       }
       catch (exception e) {
           cout &lt;&lt; e.what() &lt;&lt; endl;
       }
       dbFile.close();
    }










    /*
       LEGACY CODE, TO BE REMOVED!

    */



    void CamUtils::loadCameras_() {
       /*
           LEGACY CODE:
           This used to be the way to load cameras, but I moved on to JSON based configuration so this is no longer needed and will be removed soon
       */

       ifstream dbFile(camDb);
       string line;
       while (std::getline(dbFile, line)) {
           /*
               This function load camera data to the map:
               The order MUST be the following: 0:ID, 1:IP, 2:USERNAME, 3:PASSWORD.
               Always delimited with | no spaces between!
           */
           if (!line.empty()) {
               stringstream ss(line);
               string item;
               vector<string> splitString;

               while (std::getline(ss, item, '|')) {
                   splitString.push_back(item);
               }
               if (splitString.size() > 0) {
                   /* Dont even parse if the program didnt split right*/
                   //cout &lt;&lt; "Split string: " &lt;&lt; splitString.size() &lt;&lt; "\n";
                   for (int i = 0; i &lt; (splitString.size()); i++) cameraList[splitString[0]].push_back(splitString[i]);
               }
           }
       }
    }



    void CamUtils::writeLineToDb_(const string &amp; content, bool append) {
       ofstream dbFile;
       cout &lt;&lt; "Creating?";
       if (append) {
           dbFile.open(camDb, ios_base::app);
       }
       else {
           dbFile.open(camDb);
       }

       dbFile &lt;&lt; content.c_str() &lt;&lt; "\r\n";
       dbFile.flush();
    }

    /* JSON Reworx */




    string CamUtils::generateRandomString(size_t length)
    {
       const char* charmap = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
       const size_t charmapLength = strlen(charmap);
       auto generator = [&amp;]() { return charmap[rand() % charmapLength]; };
       string result;
       result.reserve(length);
       generate_n(back_inserter(result), length, generator);
       return result;
    }
    </string></string></string></string></string></string></string></string></string></string></string></string></iostream>

    End of example

    How would I go about decreasing CPU usage when dealing with large amount of streams ?