
Recherche avancée
Médias (91)
-
Géodiversité
9 septembre 2011, par ,
Mis à jour : Août 2018
Langue : français
Type : Texte
-
USGS Real-time Earthquakes
8 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
-
SWFUpload Process
6 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
-
La conservation du net art au musée. Les stratégies à l’œuvre
26 mai 2011
Mis à jour : Juillet 2013
Langue : français
Type : Texte
-
Podcasting Legal guide
16 mai 2011, par
Mis à jour : Mai 2011
Langue : English
Type : Texte
-
Creativecommons informational flyer
16 mai 2011, par
Mis à jour : Juillet 2013
Langue : English
Type : Texte
Autres articles (53)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Installation en mode ferme
4 février 2011, parLe mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
C’est la méthode que nous utilisons sur cette même plateforme.
L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...)
Sur d’autres sites (8707)
-
AWS Rekognition error : Chunk video failed
14 juin 2022, par Stefano LeoneI'm using and launching Amazon Rekognition on my videos uploaded into my S3 with python. Every video is converted with FFMPEG with
AAC
Audio Codec andH264
Video Codec and then given to Rekognition. Videos are always fine, the problem is that only 60-70% of videos are processed successfully, while the rest of videos goes into error. In particular, inside the JSON returned from Rekognition :

{'JobId': '<id of="of" my="my" job="job">', 'Status': 'FAILED', 'API': 'StartFaceDetection', 'Message': 'Chunk video failed: Only 1 I-frames found in video', 'Timestamp': 1655118632996, 'Video': {'S3ObjectName': '<my video="video" inside="inside" s3="s3">', 'S3Bucket': '<my s3="s3">'}, 'ErrorCode': 'VideoNotDecodable'}
</my></my></id>


As you can see, I get an error
"Chunk video failed: only 1 I-Frames found in video"
. Honestly I don't know what is that, but the fact that I convert every video in the same way, but Rekognition fails only with some, makes me crazy. Googling was not helpful, hope you can tell me what's wrong.

-
Thumbnails from S3 Videos using FFMPEG - "No such file or directory : '/bin/ffmpeg'"
28 juin 2022, par NicoI am trying to generate thumbnails from videos in an S3 bucket every x frames by following this documentation : https://aws.amazon.com/blogs/media/processing-user-generated-content-using-aws-lambda-and-ffmpeg/


I am at the point where I'm testing the Lambda code provided in the documentation, but receive this error in CloudWatch Logs :




Here is the portion of the Lambda code associated with this error :




Any help is appreciated. Thanks !


-
FFMPEG on Heroku exceeds memory quota in testing
5 juillet 2022, par Patrick VelliaAfter following this tutorial, and getting it to work locally on my own development environment, before really getting my hands dirty and working deeper on my own project implementation, I decided to push it up to Heroku to test in a staging environment.


I had to have Heroku add the FFMPEG build-pack and turn on the Redis Server for ActionCable to work.


I didn't link the staging to a cloud storage bucket on Google or Amazon yet, just allowed it to upload directly to the dymo disk for testing. So it would go into the storage directory as it would in development for now.


the test MOV file is 186 MB in size.


The system uploaded the file fine.


According to the logs, it then copied the file from storage to tmp as the tutorial has us do.


Then it called streamio-ffmpeg's transcode method.


At this point, Heroku forcibly kills the dymo because it far exceeds the memory quota.


As this is a test environment, it's only on the free tier of Heroku.


I'm thinking I won't be able to directly process video projects on Heroku itself, unless I'm wrong ? Would it be better to call an API like Cloud Functions or Amazon Lambda, or spin up a Compute Engine long enough to process the FFMPEG command ?