
Recherche avancée
Médias (91)
-
GetID3 - Boutons supplémentaires
9 avril 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Image
-
Core Media Video
4 avril 2013, par
Mis à jour : Juin 2013
Langue : français
Type : Video
-
The pirate bay depuis la Belgique
1er avril 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Image
-
Bug de détection d’ogg
22 mars 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Video
-
Exemple de boutons d’action pour une collection collaborative
27 février 2013, par
Mis à jour : Mars 2013
Langue : français
Type : Image
-
Exemple de boutons d’action pour une collection personnelle
27 février 2013, par
Mis à jour : Février 2013
Langue : English
Type : Image
Autres articles (55)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Initialisation de MediaSPIP (préconfiguration)
20 février 2010, parLors de l’installation de MediaSPIP, celui-ci est préconfiguré pour les usages les plus fréquents.
Cette préconfiguration est réalisée par un plugin activé par défaut et non désactivable appelé MediaSPIP Init.
Ce plugin sert à préconfigurer de manière correcte chaque instance de MediaSPIP. Il doit donc être placé dans le dossier plugins-dist/ du site ou de la ferme pour être installé par défaut avant de pouvoir utiliser le site.
Dans un premier temps il active ou désactive des options de SPIP qui ne le (...) -
Supporting all media types
13 avril 2011, parUnlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)
Sur d’autres sites (12435)
-
Révision 17934 : normaliser le formulaire (legend au lieu de h3.legend) et utiliser un div.notice...
23 mai 2011, par cedric - -
Revision 4043 : Passer {tout} à tous les inclure de auteur pour le cas où il n’aurait ...
24 septembre 2010, par kent1 — LogPasser tout à tous les inclure de auteur pour le cas où il n’aurait jamais rien publié
-
Tour of Part of the VP8 Process
18 novembre 2010, par Multimedia Mike — VP8My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.
Let’s look at subblock 0 of macroblock 0 of a luma plane :
subblock 0 (original) 92 91 89 86 91 90 88 86 89 89 89 88 89 87 88 93
Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).
subblock 0 (original) 128 128 128 128 128 92 91 89 86 128 91 90 88 86 128 89 89 89 88 128 89 87 88 93
Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :subblock 0, predictor removed -36 -37 -39 -42 -37 -38 -40 -42 -39 -39 -39 -40 -39 -41 -40 -35
Next, run the subblock through the forward transform :
subblock 0, transformed -312 7 1 0 1 12 -5 2 2 -3 3 -1 1 0 -2 1
Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :
subblock 0, quantized -78 1 0 0 0 3 -1 0 0 0 0 0 0 0 0 0
The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.
The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :
subblock 0, dequantized -312 4 0 0 0 12 -4 0 0 0 0 0 0 0 0 0
Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.
Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :
subblock 0, predictor 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :
subblock 0, reconstructed 91 91 89 85 90 90 89 87 89 88 89 90 88 88 89 92
Again, not exactly the same as the original block, but an incredible facsimile thereof.
Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.
For example, here’s the next subblock :
subblock 1 (original) 84 84 87 90 85 85 86 93 86 83 83 89 91 85 84 87
Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :
subblock 1 (original) 128 128 128 128 85 84 84 87 90 87 85 85 86 93 90 86 83 83 89 92 91 85 84 87
The DC predictor is computed as
(128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108
(the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)Continuing through the same process as in subblock 0 :
subblock 1, predictor removed -24 -24 -21 -18 -23 -23 -22 -15 -22 -25 -25 -19 -17 -23 -24 -21
subblock 1, transformed
-173 -9 14 -1
2 -11 -4 0
1 6 -2 3
-5 1 0 1subblock 1, quantized
-43 -2 3 0
0 -2 -1 0
0 1 0 0
-1 0 0 0subblock 1, dequantized
-172 -8 12 0
0 -8 -4 0
0 4 0 0
-4 0 0 0subblock 1, predictor
108 108 108 108
108 108 108 108
108 108 108 108
108 108 108 108subblock 1, reconstructed
84 84 87 89
86 85 87 91
86 83 84 89
90 85 84 88I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.