
Recherche avancée
Médias (1)
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (23)
-
Le plugin : Podcasts.
14 juillet 2010, parLe problème du podcasting est à nouveau un problème révélateur de la normalisation des transports de données sur Internet.
Deux formats intéressants existent : Celui développé par Apple, très axé sur l’utilisation d’iTunes dont la SPEC est ici ; Le format "Media RSS Module" qui est plus "libre" notamment soutenu par Yahoo et le logiciel Miro ;
Types de fichiers supportés dans les flux
Le format d’Apple n’autorise que les formats suivants dans ses flux : .mp3 audio/mpeg .m4a audio/x-m4a .mp4 (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
ANNEXE : Les plugins utilisés spécifiquement pour la ferme
5 mars 2010, parLe site central/maître de la ferme a besoin d’utiliser plusieurs plugins supplémentaires vis à vis des canaux pour son bon fonctionnement. le plugin Gestion de la mutualisation ; le plugin inscription3 pour gérer les inscriptions et les demandes de création d’instance de mutualisation dès l’inscription des utilisateurs ; le plugin verifier qui fournit une API de vérification des champs (utilisé par inscription3) ; le plugin champs extras v2 nécessité par inscription3 (...)
Sur d’autres sites (4296)
-
How to upload object to a bucket in Google Cloud Platform from Python script
7 juillet 2016, par BryanThe goal of this script is to extract audio from a video file using ffmpeg and upload it into a bucket on Google Cloud Platform each time it is called. Eventually I will have to extract audio from a large list of videos, so ideally I would want my script to extract and subsequently upload it into the cloud.
My confusion is how to use GCP API to upload my object into a bucket. Any advice would be greatly appreciated !
Link for reference : https://cloud.google.com/storage/docs/json_api/v1/json-api-python-samples#setup-code
import subprocess
import sys
import re
fullVideo = sys.argv[1]
title = re.findall('^([^.]*).*', fullVideo)
title = str(title[0])
subprocess.call('ffmpeg -i ' + fullVideo + ' -vn -ab 128k ' + title + '.flac', shell = True)
def upload_object(bucket, filename, readers, owners):
service = create_service()
# This is the request body as specified:
# http://g.co/cloud/storage/docs/json_api/v1/objects/insert#request
body = {
'name': filename,
}
# If specified, create the access control objects and add them to the
# request body
if readers or owners:
body['acl'] = []
for r in readers:
body['acl'].append({
'entity': 'user-%s' % r,
'role': 'READER',
'email': r
})
for o in owners:
body['acl'].append({
'entity': 'user-%s' % o,
'role': 'OWNER',
'email': o
})
# Now insert them into the specified bucket as a media insertion.
# http://g.co/dev/resources/api-libraries/documentation/storage/v1/python/latest/storage_v1.objects.html#insert
with open(filename, 'rb') as f:
req = service.objects().insert(
bucket=bucket, body=body,
# You can also just set media_body=filename, but # for the sake of
# demonstration, pass in the more generic file handle, which could
# very well be a StringIO or similar.
media_body=http.MediaIoBaseUpload(f, 'application/octet-stream'))
resp = req.execute()
return resp -
Google Colab Runtime Error please install ffmpeg (version 4.2 is currently supported) andbuild torchvision from source
4 juillet 2021, par ImanI'm using Google Colab to write a program using torch vision to extract frames from an mp4 video in my google drive. Thus far, I haven't wrote the full code yet but have been experimenting with torch vision.io library. Upon running the code, I get the following errors.


Mounted at /content/gdrive
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
 in <module>()
 6 
 7 video_path = "/content/drive/MyDrive/Training-Data-Videos/MASKED/00_MASKED_0_0.mp4"
----> 8 reader = torchvision.io.VideoReader(video_path, "video")
 9 reader.seek(2.0)
 10 frame = next(reader)

/usr/local/lib/python3.7/dist-packages/torchvision/io/__init__.py in __init__(self, path, stream)
 106 + "to enable video_reader support, please install "
 107 + "ffmpeg (version 4.2 is currently supported) and"
--> 108 + "build torchvision from source."
 109 )
 110 self._c = torch.classes.torchvision.Video(path, stream)

RuntimeError: Not compiled with video_reader support, to enable video_reader support, please install ffmpeg (version 4.2 is currently supported) andbuild torchvision from source.

</module>


The code that I have written in the notebook so far is the following :


import os 
import torchvision 
from google.colab import drive
drive.mount('/content/gdrive', force_remount=True)

video_path = "/content/drive/MyDrive/Training-Data-Videos/MASKED/00_MASKED_0_0.mp4"
reader = torchvision.io.VideoReader(video_path, "video")
reader.seek(2.0)
frame = next(reader)
print (frame)




To solve the problem, I tried to install ffmpeg on colab as this post says but it did not work. Can someone tell me what is the error ?


-
Enable FFMPEG extension on google app engine
23 mars 2015, par manish1706I am searching for the feature/cmd that can enable FFMPEG extension for php application over App Engine.