
Recherche avancée
Autres articles (49)
-
(Dés)Activation de fonctionnalités (plugins)
18 février 2011, parPour gérer l’ajout et la suppression de fonctionnalités supplémentaires (ou plugins), MediaSPIP utilise à partir de la version 0.2 SVP.
SVP permet l’activation facile de plugins depuis l’espace de configuration de MediaSPIP.
Pour y accéder, il suffit de se rendre dans l’espace de configuration puis de se rendre sur la page "Gestion des plugins".
MediaSPIP est fourni par défaut avec l’ensemble des plugins dits "compatibles", ils ont été testés et intégrés afin de fonctionner parfaitement avec chaque (...) -
Activation de l’inscription des visiteurs
12 avril 2011, parIl est également possible d’activer l’inscription des visiteurs ce qui permettra à tout un chacun d’ouvrir soit même un compte sur le canal en question dans le cadre de projets ouverts par exemple.
Pour ce faire, il suffit d’aller dans l’espace de configuration du site en choisissant le sous menus "Gestion des utilisateurs". Le premier formulaire visible correspond à cette fonctionnalité.
Par défaut, MediaSPIP a créé lors de son initialisation un élément de menu dans le menu du haut de la page menant (...) -
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs
Sur d’autres sites (10119)
-
FATE Under New Management
2 août 2010, par Multimedia Mike — FATE ServerAt any given time, I have between 20-30 blog posts in some phase of development. Half of them seem to be contemplations regarding the design and future of my original FATE system and are thus ready for the recycle bin at this point. Mans is a man of considerably fewer words, so I thought I would use a few words to describe the new FATE system that he put together.
Overview
Here are the distinguishing features that Mans mentioned in his announcement message :- Test specs are part of the ffmpeg repo. They are thus properly versioned, and any developer can update them as needed.
- Support for inexact tests.
- Parallel testing on multi-core systems.
- Anyone registered with FATE can add systems.
- Client side entirely in POSIX shell script and GNU make.
- Open source backend and web interface.
- Client and backend entirely decoupled.
- Anyone can contribute patches.
Client
The FATE build/test client source code is contained in tests/fate.sh in the FFmpeg source tree. The script — as the extension implies — is a shell script. It takes a text file full of shell variables, updates source code, configures, builds, and tests. It’s a considerably minor amount of code, especially compared to my original Python code. Part of this is because most of the testing logic has shifted into FFmpeg itself. The build system knows about all the FATE tests and all of the specs are now maintained in the codebase (thanks to all who spearheaded that effort— I think it was Vitor and Mans).The client creates a report file which contains a series of lines to be transported to the server. The first line has some information about the configuration and compiler, plus the overall status of the build/test iteration. The second line contains ’./configure’ information. Each of the remaining lines contain information about an individual FATE test, mostly in Base64 format.
Server
The server source code lives at http://git.mansr.com/?p=fateweb. It is written in Perl and plugs into a CGI-capable HTTP server. Authentication between the client and the server operates via SSH/SSL. In stark contrast to the original FATE server, there is no database component on the backend. The new system maintains information in a series of flat files. -
Inside WebM Technology : VP8 Intra and Inter Prediction
20 juillet 2010, par noreply@blogger.com (Lou Quillio)Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.
Image by Fido Factor, licensed under Creative Commons Attribution License.
Based on a work at www.flickr.comA VP8 encoder uses two classes of prediction :- Intra prediction uses data within a single video frame
- Inter prediction uses data from previously encoded frames
The residual signal data is then encoded using other techniques, such as transform coding.VP8 Intra Prediction ModesVP8 intra prediction modes are used with three types of macroblocks :- 4x4 luma
- 16x16 luma
- 8x8 chroma
Four common intra prediction modes are shared by these macroblocks :- H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
- V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
- DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
- TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :Xij = Li + Aj - C (i, j=0, 1, 2, 3)Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).VP8 Inter Prediction ModesIn VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.Yaowu Xu, Ph.D. is a codec engineer at Google. -
Dreamcast Anniversary Programming
10 septembre 2010, par Multimedia Mike — Game HackingThis day last year saw a lot of nostalgia posts on the internet regarding the Sega Dreamcast, launched 10 years prior to that day (on 9/9/99). Regrettably, none of the retrospectives that I read really seemed to mention the homebrew potential, which is the aspect that interested me. On the occasion of the DC’s 11th anniversary, I wanted to remind myself how to build something for the unit and do so using modern equipment and build tools.
Background
Like many other programmers, I initially gained interest in programming because I desired to program video games. Not content to just plunk out games on a PC, I always had a deep, abiding ambition to program actual video game hardware. That is, I wanted to program a purpose-built video game console. The Sega Dreamcast might be the most ideal candidate to ever emerge for that task. All that was required to run your own software on the unit was the console, a PC, some free software tools, and a special connectivity measure.The Equipment
Here is the hardware required (ideally) to build software for the DC :- The console itself (I happen to have 3 of them laying around, as pictured above)
- Some peripherals : Such as the basic DC controller, the DC keyboard (flagship title : Typing of the Dead), and the visual memory unit (VMU)
- VGA box : The DC supported 480p gaming via a device that allowed you to connect the console straight to a VGA monitor via 15-pin D-sub. Not required for development, but very useful. I happen to have 3 of them from different third parties :
- Finally, the connectivity measure for hooking the DC to the PC.
There are 2 options here. The first is rare, expensive and relatively fast : A DC broadband adapter. The second is slower but much less expensive and relatively easy to come by– the DC coder’s cable. This was a DB-9 adapter on one end and a DC serial adapter on the other, and a circuit in the middle to monkey with voltage levels or some such ; I’m no electrical engineer. I procured this model from the notorious Lik Sang, well before that outfit was sued out of business.
Dealing With Legacy
Take a look at that coder’s cable again. DB-9 ? When was the last time you owned a computer with one of those ? And then think farther back to the last time to had occasion to plug something into one of those ports (likely a serial mouse).
A few years ago, someone was about to toss out this Belkin USB to DB-9 serial converter when I intervened. I foresaw the day when I would dust off the coder’s cable. So now I can connect a USB serial cable to my Eee PC, which then connects via converter to a different serial cable, one which has its own conversion circuit that alters the connection to yet another type of serial cable.
Bits is bits is bits as far as I’m concerned.
Putting It All Together
Now to assemble all the pieces (plus a monitor) into one development desktop :
The monitor says “dcload 1.0.3, idle…”. That’s a custom boot CD-ROM that is patiently waiting to receive commands, code and data via the serial port.
Getting The Software
Back in the day, homebrew software development on the DC revolved around these components :- GNU binutils : for building base toolchains for the Hitachi SH-4 main CPU as well as the ARM7-based audio coprocessor
- GNU gcc/g++ : for building compilers on top of binutils for the 2 CPUs
- Newlib : a C library intended for embedded systems
- KallistiOS : an open source, real-time OS developed for the DC
The DC was my first exposure to building cross compilers. I developed some software for the DC in the earlier part of the decade. Now, I am trying to figure out how I did it, especially since I think I came up with a few interesting ideas at the time.
Struggling With the Software Legacy
The source for KallistiOS has gone untouched since about 2004 but is still around thanks to Sourceforge. The instructions for properly building the toolchain have been lost to time, or would be were it not for the Internet Archive’s copy of a site called Hangar Eleven. Also, KallistiOS makes reference to a program called ‘dc-tool’ which is needed on the client side for communicating with dcload. I was able to find this binary at the Boob ! site (well-known in DC circles).I was able to build the toolchain using binutils 2.20.1, gcc 4.5.1 and newlib 1.18.0. Building the toolchain is an odd process as it requires building the binutils, then building the C compiler, then newlib, and then building the C compiler again along with the C++ compiler because the C++ compiler depends on newlib.
With some effort, I got the toolchain to build KallistiOS and most of its example programs. I documented most of the tweaks I had to make, several of them exactly the same as this one that I recently discovered while resurrecting a 10-year-old C program (common construct in C programming of old ?).
Moment of Truth
So I had some example programs built as ELF files. I told dc-tool to upload and run them on the waiting console. Unfortunately, the tool would just sort of stall, though some communication had evidently taken place. It has been many years since I have seen this in action but I recall that something more ought to be happening.Plan B (Hardware)
This is the point that I remember that I have been holding onto one rather old little machine that still has a DB-9 serial port. It’s not especially ergonomic to set up. I have to run it on my floor because, to connect it to my network, I need to run a 25′ ethernet cable that just barely reaches from the other room. The machine doesn’t seem to like USB keyboards, which is a shame since I have long since ditched any PS/2 keyboards. Fortunately, the box still has an old Gentoo distro and is running sshd, a holdover from its former life as a headless box.
Now when I run dc-tool, both the PC and DC report the upload progress while pretty overscan bars oscillate on the DC’s monitor. Now I’m back in business, until…
Plan C (Software)
None of these KallistiOS example programs are working. Some are even reporting catastrophic failures (register dumps) via the serial console. That’s when I remember that gcc can be a bit fickle on CPU architectures that are not, shall we say, first-class citizens. Back in the day, gcc 2.95 was a certified no-go for SH-4 development. 3.0.3 or 3.0.4 was called upon at the time. As I’m hosting this toolchain on x86_64 right now, gcc 3.0.4 can’t even be built (predates the architecture).One last option : As I searched through my old DC project directories, I found that I still have a lot of the resulting binaries, the ones I built 7-8 years ago. I upload a few of those and I finally see homebrew programming at work again, including this old program (described in detail here).
Next Steps
If I ever feel like revisiting this again, I suppose I can try some of the older 4.x series to see if they build valid programs. Alternatively, try building an x86_32-hosted 3.0.4 toolchain which ought to be a known good. And if that fails, search a little bit more to find that there are still active Dreamcast communities out there on the internet which probably have development toolchain binaries ready for download.