Recherche avancée

Médias (0)

Mot : - Tags -/configuration

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (80)

  • Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs

    12 avril 2011, par

    La manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
    Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

Sur d’autres sites (11458)

  • Heroic Defender of the Stack

    27 janvier 2011, par Multimedia Mike — Programming

    Problem Statement

    I have been investigating stack smashing and countermeasures (stack smashing prevention, or SSP). Briefly, stack smashing occurs when a function allocates a static array on the stack and writes past the end of it, onto other local variables and eventually onto other function stack frames. When it comes time to return from the function, the return address has been corrupted and the program ends up some place it really shouldn’t. In the best case, the program just crashes ; in the worst case, a malicious party crafts code to exploit this malfunction.

    Further, debugging such a problem is especially obnoxious because by the time the program has crashed, it has already trashed any record (on the stack) of how it got into the errant state.

    Preventative Countermeasure

    GCC has had SSP since version 4.1. The computer inserts SSP as additional code when the -fstack-protector command line switch is specified. Implementation-wise, SSP basically inserts a special value (the literature refers to this as the ’canary’ as in "canary in the coalmine") at the top of the stack frame when entering the function, and code before leaving the function to make sure the canary didn’t get stepped on. If something happens to the canary, the program is immediately aborted with a message to stderr about what happened. Further, gcc’s man page on my Ubuntu machine proudly trumpets that this functionality is enabled per default ever since Ubuntu 6.10.

    And that’s really all there is to it. Your code is safe from stack smashing by default. Or so the hand-wavy documentation would have you believe.

    Not exactly

    Exercising the SSP

    I wanted to see the SSP in action to make sure it was a real thing. So I wrote some code that smashes the stack in pretty brazen ways so that I could reasonably expect to trigger the SSP (see later in this post for the code). Here’s what I learned that wasn’t in any documentation :

    SSP is only emitted for functions that have static arrays of 8-bit data (i.e., [unsigned] chars). If you have static arrays of other data types (like, say, 32-bit ints), those are still fair game for stack smashing.

    Evaluating the security vs. speed/code size trade-offs, it makes sense that the compiler wouldn’t apply this protection everywhere (I can only muse about how my optimization-obsessive multimedia hacking colleagues would absolute freak out if this code were unilaterally added to all functions). So why are only static char arrays deemed to be "vulnerable objects" (the wording that the gcc man page uses) ? A security hacking colleague suggested that this is probably due to the fact that the kind of data which poses the highest risk is arrays of 8-bit input data from, e.g., network sources.

    The gcc man page also lists an option -fstack-protector-all that is supposed to protect all functions. The man page’s definition of "all functions" perhaps differs from my own since invoking the option does not have differ in result from plain, vanilla -fstack-protector.

    The Valgrind Connection

    "Memory trouble ? Run Valgrind !" That may as well be Valgrind’s marketing slogan. Indeed, it’s the go-to utility for finding troublesome memory-related problems and has saved me on a number of occasions. However, it must be noted that it is useless for debugging this type of problem. If you understand how Valgrind works, this makes perfect sense. Valgrind operates by watching all memory accesses and ensuring that the program is only accessing memory to which it has privileges. In the stack smashing scenario, the program is fully allowed to write to that stack space ; after all, the program recently, legitimately pushed that return value onto the stack when calling the errant, stack smashing function.

    Valgrind embodies a suite of tools. My idea for an addition to this suite would be a mechanism which tracks return values every time a call instruction is encountered. The tool could track the return values in a separate stack data structure, though this might have some thorny consequences for some more unusual program flows. Instead, it might track them in some kind of hash/dictionary data structure and warn the programmer whenever a ’ret’ instruction is returning to an address that isn’t in the dictionary.

    Simple Stack Smashing Code

    Here’s the code I wrote to test exactly how SSP gets invoked in gcc. Compile with ’gcc -g -O0 -Wall -fstack-protector-all -Wstack-protector stack-fun.c -o stack-fun’.

    stack-fun.c :

    C :
    1. /* keep outside of the stack frame */
    2. static int i ;
    3.  
    4. void stack_smasher32(void)
    5. {
    6.  int buffer32[8] ;
    7.  // uncomment this array and compile without optimizations
    8.  // in order to force this function to compile with SSP
    9. // char buffer_to_trigger_ssp[8] ;
    10.  
    11.  for (i = 0 ; i <50 ; i++)
    12.   buffer32[i] = 0xA5 ;
    13. }
    14.  
    15. void stack_smasher8(void)
    16. {
    17.  char buffer8[8] ;
    18.  for (i = 0 ; i <50 ; i++)
    19.   buffer8[i] = 0xA5 ;
    20. }
    21.  
    22. int main()
    23. {
    24. // stack_smasher8() ;
    25.  stack_smasher32() ;
    26.  return 0 ;
    27. }

    The above incarnation should just produce the traditional "Segmentation fault". However, uncommenting and executing stack_smasher8() in favor of stack_smasher32() should result in "*** stack smashing detected *** : ./stack-fun terminated", followed by the venerable "Segmentation fault".

    As indicated in the comments for stack_smasher32(), it’s possible to trick the compiler into emitting SSP for a function by inserting an array of at least 8 bytes (any less and SSP won’t emit, as documented, unless gcc’s ssp-buffer-size parameter is tweaked). This has to be compiled with no optimization at all (-O0) or else the compiler will (quite justifiably) optimize away the unused buffer and omit SSP.

    For reference, I ran my tests on Ubuntu 10.04.1 with gcc 4.4.3 compiling the code for both x86_32 and x86_64.

  • The 11th Hour RoQ Variation

    12 avril 2012, par Multimedia Mike — Game Hacking, dreamroq, Reverse Engineering, roq, Vector Quantization

    I have been looking at the RoQ file format almost as long as I have been doing practical multimedia hacking. However, I have never figured out how the RoQ format works on The 11th Hour, which was the game for which the RoQ format was initially developed. When I procured the game years ago, I remember finding what appeared to be RoQ files and shoving them through the open source decoders but not getting the right images out.

    I decided to dust off that old copy of The 11th Hour and have another go at it.



    Baseline
    The game consists of 4 CD-ROMs. Each disc has a media/ directory that has a series of files bearing the extension .gjd, likely the initials of one Graeme J. Devine. These are resource files which are merely headerless concatenations of other files. Thus, at first glance, one file might appear to be a single RoQ file. So that’s the source of some of the difficulty : Sending an apparent RoQ .gjd file through a RoQ player will often cause the program to complain when it encounters the header of another RoQ file.

    I have uploaded some samples to the usual place.

    However, even the frames that a player can decode (before encountering a file boundary within the resource file) look wrong.

    Investigating Codebooks Using dreamroq
    I wrote dreamroq last year– an independent RoQ playback library targeted towards embedded systems. I aimed it at a gjd file and quickly hit a codebook error.

    RoQ is a vector quantizer video codec that maintains a codebook of 256 2×2 pixel vectors. In the Quake III and later RoQ files, these are transported using a YUV 4:2:0 colorspace– 4 Y samples, a U sample, and a V sample to represent 4 pixels. This totals 6 bytes per vector. A RoQ codebook chunk contains a field that indicates the number of 2×2 vectors as well as the number of 4×4 vectors. The latter vectors are each comprised of 4 2×2 vectors.

    Thus, the total size of a codebook chunk ought to be (# of 2×2 vectors) * 6 + (# of 4×4 vectors) * 4.

    However, this is not the case with The 11th Hour RoQ files.

    Longer Codebooks And Mystery Colorspace
    Juggling the numbers for a few of the codebook chunks, I empirically determined that the 2×2 vectors are represented by 10 bytes instead of 6. Now I need to determine what exactly these 10 bytes represent.

    I should note that I suspect that everything else about these files lines up with successive generations of the format. For example if a file has 640×320 resolution, that amounts to 40×20 macroblocks. dreamroq iterates through 40×20 8×8 blocks and precisely exhausts the VQ bitstream. So that all looks valid. I’m just puzzled on the codebook format.

    Here is an example codebook dump :

    ID 0x1002, len = 0x0000014C, args = 0x1C0D
      0 : 00 00 00 00 00 00 00 00 80 80
      1 : 08 07 00 00 1F 5B 00 00 7E 81
      2 : 00 00 15 0F 00 00 40 3B 7F 84
      3 : 00 00 00 00 3A 5F 18 13 7E 84
      4 : 00 00 00 00 3B 63 1B 17 7E 85
      5 : 18 13 00 00 3C 63 00 00 7E 88
      6 : 00 00 00 00 00 00 59 3B 7F 81
      7 : 00 00 56 23 00 00 61 2B 80 80
      8 : 00 00 2F 13 00 00 79 63 81 83
      9 : 00 00 00 00 5E 3F AC 9B 7E 81
      10 : 1B 17 00 00 B6 EF 77 AB 7E 85
      11 : 2E 43 00 00 C1 F7 75 AF 7D 88
      12 : 6A AB 28 5F B6 B3 8C B3 80 8A
      13 : 86 BF 0A 03 D5 FF 3A 5F 7C 8C
      14 : 00 00 9E 6B AB 97 F5 EF 7F 80
      15 : 86 73 C8 CB B6 B7 B7 B7 85 8B
      16 : 31 17 84 6B E7 EF FF FF 7E 81
      17 : 79 AF 3B 5F FC FF E2 FF 7D 87
      18 : DC FF AE EF B3 B3 B8 B3 85 8B
      19 : EF FF F5 FF BA B7 B6 B7 88 8B
      20 : F8 FF F7 FF B3 B7 B7 B7 88 8B
      21 : FB FF FB FF B8 B3 B4 B3 85 88
      22 : F7 FF F7 FF B7 B7 B9 B7 87 8B
      23 : FD FF FE FF B9 B7 BB B7 85 8A
      24 : E4 FF B7 EF FF FF FF FF 7F 83
      25 : FF FF AC EB FF FF FC FF 7F 83
      26 : CC C7 F7 FF FF FF FF FF 7F 81
      27 : FF FF FE FF FF FF FF FF 80 80
    

    Note that 0x14C (the chunk size) = 332, 0x1C and 0x0D (the chunk arguments — count of 2×2 and 4×4 vectors, respectively) are 28 and 13. 28 * 10 + 13 * 4 = 332, so the numbers check out.

    Do you see any patterns in the codebook ? Here are some things I tried :

    • Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :


    • Treating the last 2 bytes as U & V and treating the first 8 as 4 16-bit little-endian Y samples :


    • Disregarding the final 2 bytes and treating the first 8 bytes as 4 RGB565 pixels (both little- and big-endian, respectively, shown here) :


    • Based on the type of data I’m seeing in these movies (which appears to be intended as overlays), I figured that some of these bits might indicate transparency ; here is 15-bit big-endian RGB which disregards the top bit of each pixel :


    These images are taken from the uploaded sample bdpuz.gjd, apparently a component of the puzzle represented in this screenshot.

    Unseen Types
    It has long been rumored that early RoQ files could contain JPEG images. I finally found one such specimen. One of the files bundled early in the uploaded fhpuz.gjd sample contains a JPEG frame. It’s a standard JFIF file and can easily be decoded after separating the bytes from the resource using ‘dd’. JPEGs serve as intraframes in the coding scheme, with successive RoQ frames moving objects on top.

    However, a new chunk type showed up as well, one identified by 0×1030. I have never encountered this type. Where could I possibly find data about this ? Fortunately, iD Games recently posted all of their open sourced games at Github. Reading through the code for their official RoQ decoder, I see that this is called a RoQ_PACKET. The name and the code behind it are both supremely unhelpful. The code is basically a no-op. The payloads of the various RoQ_PACKETs from one sample are observed to be either 8784, 14752, or 14760 bytes in length. It’s very likely that this serves the same purpose as the JPEG intraframes.

    Other Tidbits
    I read through the readme.txt on the first game disc and found this nugget :

            g)      Animations displayed normally or in SPOOKY MODE
    

    SPOOKY MODE is blue-tinted grayscale with color cursors, puzzle
    and game pieces. It is the preferred display setting of the
    developers at Trilobyte. Just for fun, try out the SPOOKY
    MODE.

    The MobyGames screenshot page has a number of screenshots labeled as being captured in spooky mode. Color tricks ?

    Meanwhile, another twist arose as I kept tweaking dreamroq to deal with more RoQ weirdness : After modifying my dreamroq code to handle these 10-byte vectors, it eventually chokes on another codebook. These codebooks happen to have 6-byte vectors again ! Fortunately, I was already working on a scheme to automatically detect which codebook is in play (plugging the numbers into a formula and seeing which vector size checks out).

  • compressing an RGB framebuffer with libxvidcore library

    6 décembre 2011, par hevi

    I want to compress a framebuffer (or any RGB raw image data) instance and compress it using xvid codec (actually any other compression library is also welcome especially libx264).

    I successfully get the framebuffer data from a game I developed for myself which actually is a byte array of size 3(for RGB channels) x width x height. I also downloaded and compiled libxvidcore. However I have no idea how to compress the framebuffer using libxvidcore library. I googled for examples but couldn't find what I need.

    any helps are welcome !