
Recherche avancée
Médias (1)
-
SWFUpload Process
6 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
Autres articles (56)
-
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)
Sur d’autres sites (9463)
-
Trying to redirect binary stdout of ffmpeg to NeroAacEnc stdin
2 mai 2017, par BenI am trying to write a program in C# 2010 that converts mp3 files to an audio book in m4a format via ffmpeg.exe and NeroAACenc.exe.
For doing so I redirect stdout of ffmpeg to stdin of the Nero encoder within my application using the build in Diagnostics.Process class.Everything seems to work as expected but for some reason StandardOutput.BaseStream
of ffmpeg stops receiving data at some time. The process does not exit and the ErrorDataReceived event is also not getting raised.
The produced output m4a file has always a length of 2 minutes. The same applies if I just encode the mp3 file to a temp wav file without feeding Nero.I tried the same via the command line and this works without any problem.
ffmpeg -i test.mp3 -f wav - | neroAacEnc -ignorelength -if - -of test.m4a
Can anyone please tell me what I am doing wrong here ?
Thanks in advance.class Encoder
{
private byte[] ReadBuffer = new byte[4096];
private Process ffMpegDecoder = new Process();
private Process NeroEncoder = new Process();
private BinaryWriter NeroInput;
//Create WAV temp file for testing
private Stream s = new FileStream("D:\\test\\test.wav", FileMode.Create);
private BinaryWriter outfile;
public void Encode()
{
ProcessStartInfo ffMpegPSI = new ProcessStartInfo("ffmpeg.exe", "-i D:\\test\\test.mp3 -f wav -");
ffMpegPSI.UseShellExecute = false;
ffMpegPSI.CreateNoWindow = true;
ffMpegPSI.RedirectStandardOutput = true;
ffMpegPSI.RedirectStandardError = true;
ffMpegDecoder.StartInfo = ffMpegPSI;
ProcessStartInfo NeroPSI = new ProcessStartInfo("neroAacEnc.exe", "-if - -ignorelength -of D:\\test\\test.m4a");
NeroPSI.UseShellExecute = false;
NeroPSI.CreateNoWindow = true;
NeroPSI.RedirectStandardInput = true;
NeroPSI.RedirectStandardError = true;
NeroEncoder.StartInfo = NeroPSI;
ffMpegDecoder.Exited += new EventHandler(ffMpegDecoder_Exited);
ffMpegDecoder.ErrorDataReceived += new DataReceivedEventHandler(ffMpegDecoder_ErrorDataReceived);
ffMpegDecoder.Start();
NeroEncoder.Start();
NeroInput = new BinaryWriter(NeroEncoder.StandardInput.BaseStream);
outfile = new BinaryWriter(s);
ffMpegDecoder.StandardOutput.BaseStream.BeginRead(ReadBuffer, 0, ReadBuffer.Length, new AsyncCallback(ReadCallBack), null);
}
private void ReadCallBack(IAsyncResult asyncResult)
{
int read = ffMpegDecoder.StandardOutput.BaseStream.EndRead(asyncResult);
if (read > 0)
{
NeroInput.Write(ReadBuffer);
NeroInput.Flush();
outfile.Write(ReadBuffer);
outfile.Flush();
ffMpegDecoder.StandardOutput.BaseStream.Flush();
ffMpegDecoder.StandardOutput.BaseStream.BeginRead(ReadBuffer, 0, ReadBuffer.Length, new AsyncCallback(ReadCallBack), null);
}
else
{
ffMpegDecoder.StandardOutput.BaseStream.Close();
outfile.Close();
}
}
private void ffMpegDecoder_Exited(object sender, System.EventArgs e)
{
Console.WriteLine("Exit");
}
private void ffMpegDecoder_ErrorDataReceived(object sender, DataReceivedEventArgs errLine)
{
Console.WriteLine("Error");
}
} -
Convert image to black and white with ffmpeg
20 septembre 2023, par maddogandnorikoHow can I convert an image to b&w with ffmpeg ?


I am making some coloring book images by decoloring images and reducing to a black outline. Even though they appear b&w most are not.


-
pyqt5 gui dependent on ffmpeg compiled with pyinstaller doesn't run on other machines ?
19 octobre 2022, par SorenI am trying to create a simple Pyqt5 GUI for Windows 10 that uses OpenAI's model Whisper to transcribe a sound file and outputting the results in an Excel-file. It works on my own computer where I have installed the necessary dependencies for Whisper as stated on their github i.e. FFMEG. I provide a minimal example of my code below :


# Import library
import whisper
import os
from PyQt5 import QtCore, QtGui, QtWidgets
import pandas as pd
import xlsxwriter


class Ui_Dialog(QtWidgets.QDialog):
 
 
 # Define functions to use in GUI
 
 # Define function for selecting input files
 def browsefiles(self, Dialog):
 
 
 # Make Dialog box and save files into tuple of paths
 files = QtWidgets.QFileDialog().getOpenFileNames(self, "Select soundfiles", os.getcwd(), "lyd(*mp2 *.mp3 *.mp4 *.m4a *wma *wav)")
 
 self.liste = []
 for url in range(len(files[0])):
 self.liste.append(files[0][url]) 

 
 def model_load(self, Dialog):
 
 # Load picked model
 self.model = whisper.load_model(r'C:\Users\Søren\Downloads\Whisper_gui\models' + "\\" + self.combo_modelSize.currentText() + ".pt") ##the path is set to where the models are on the other machine
 
 
 def run(self, Dialog):
 
 # Make list for sound files
 liste_df = []
 
 
 # Running loop for interpreting and encoding sound files
 for url in range(len(self.liste)):
 
 # Make dataframe
 df = pd.DataFrame(columns=["filename", "start", "end", "text"])
 
 # Run model
 result = self.model.transcribe(self.liste[url])
 
 # Extract results
 for i in range(len(result["segments"])):
 start = result["segments"][i]["start"]
 end = result["segments"][i]["end"]
 text = result["segments"][i]["text"]
 
 df = df.append({"filename": self.liste[url].split("/")[-1],
 "start": start, 
 "end": end, 
 "text": text}, ignore_index=True)
 
 # Add detected language to dataframe
 df["sprog"] = result["language"]
 
 
 liste_df.append(df)
 
 
 
 # Make excel output
 
 # Concatenate list of dfs
 dataframe = pd.concat(liste_df)
 
 
 # Create a Pandas Excel writer using XlsxWriter as the engine.
 writer = pd.ExcelWriter(self.liste[0].split(".")[0] + '_OUTPUT.xlsx', engine='xlsxwriter')
 writer_wrap_format = writer.book.add_format({"text_wrap": True, 'num_format': '@'})


 # Write the dataframe data to XlsxWriter. Turn off the default header and
 # index and skip one row to allow us to insert a user defined header.
 dataframe.to_excel(writer, sheet_name="Output", startrow=1, header=False, index=False)

 # Get the xlsxwriter workbook and worksheet objects.
 #workbook = writer.book
 worksheet = writer.sheets["Output"]

 # Get the dimensions of the dataframe.
 (max_row, max_col) = dataframe.shape

 # Create a list of column headers, to use in add_table().
 column_settings = [{'header': column} for column in dataframe.columns]

 # Add the Excel table structure. Pandas will add the data.
 worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': column_settings})

 # Make the columns wider for clarity.
 worksheet.set_column(0, max_col - 1, 12)
 
 in_col_no = xlsxwriter.utility.xl_col_to_name(dataframe.columns.get_loc("text"))
 
 worksheet.set_column(in_col_no + ":" + in_col_no, 30, writer_wrap_format)

 # Close the Pandas Excel writer and output the Excel file.
 writer.save()
 writer.close()
 
 
 ## Design setup
 
 def setupUi(self, Dialog):
 Dialog.setObjectName("Dialog")
 Dialog.resize(730, 400)
 
 self.select_files = QtWidgets.QPushButton(Dialog)
 self.select_files.setGeometry(QtCore.QRect(40, 62, 81, 31))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.select_files.setFont(font)
 self.select_files.setObjectName("select_files")
 
 
 
 
 self.combo_modelSize = QtWidgets.QComboBox(Dialog)
 self.combo_modelSize.setGeometry(QtCore.QRect(40, 131, 100, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.combo_modelSize.setFont(font)
 self.combo_modelSize.setObjectName("combo_modelSize")
 
 
 self.runButton = QtWidgets.QPushButton(Dialog)
 self.runButton.setGeometry(QtCore.QRect(40, 289, 71, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.runButton.setFont(font)
 self.runButton.setObjectName("runButton")
 
 
 

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)
 
 
 
 modelSize_options = ['Chose model', 'tiny', 'base', 'small', 'medium', 'large']
 self.combo_modelSize.addItems(modelSize_options)
 
 # Do an action!
 self.select_files.clicked.connect(self.browsefiles)
 self.combo_modelSize.currentIndexChanged.connect(self.model_load)
 self.runButton.clicked.connect(self.run)
 
 
 
 

 def retranslateUi(self, Dialog):
 _translate = QtCore.QCoreApplication.translate
 Dialog.setWindowTitle(_translate("Dialog", "Dialog"))
 self.runButton.setText(_translate("Dialog", "Go!"))
 self.select_files.setText(_translate("Dialog", "Select"))


if __name__ == "__main__":
 import sys
 app = QtWidgets.QApplication(sys.argv)
 Dialog = QtWidgets.QDialog()
 ui = Ui_Dialog()
 ui.setupUi(Dialog)
 Dialog.show()
 sys.exit(app.exec_())



I compile this app with pyinstaller using the following code. I had some issues to begin with so I found other with similar problems and ended up with this :


pyinstaller --onedir --hidden-import=pytorch --collect-data torch --copy-metadata torch --copy-metadata tqdm --copy-metadata tokenizers --copy-metadata importlib_metadata --hidden-import="sklearn.utils._cython_blas" --hidden-import="sklearn.neighbors.typedefs" --hidden-import="sklearn.neighbors.quad_tree" --hidden-import="sklearn.tree" --hidden-import="sklearn.tree._utils" --copy-metadata regex --copy-metadata requests --copy-metadata packaging --copy-metadata filelock --copy-metadata numpy --add-data "./ffmpeg/*;./ffmpeg/" --hidden-import=whisper --copy-metadata whisper --collect-data whisper minimal_example_whisper.py


When I take the outputtet dist directory and try to run the app on another Windows machine without FFMPEG installed (or Whisper or any other things), I get the following error from the terminal as I push the "run" button in the app (otherwise the app does run).


C:\Users\Søren>"G:\minimal_example_whisper\minimal_example_whisper.exe"
whisper\transcribe.py:70: UserWarning: FP16 is not supported on CPU; using FP32 instead
Traceback (most recent call last):
 File "minimal_example_whisper.py", line 45, in run
 File "whisper\transcribe.py", line 76, in transcribe
 File "whisper\audio.py", line 111, in log_mel_spectrogram
 File "whisper\audio.py", line 42, in load_audio
 File "ffmpeg\_run.py", line 313, in run
 File "ffmpeg\_run.py", line 284, in run_async
 File "subprocess.py", line 951, in __init__
 File "subprocess.py", line 1420, in _execute_child
FileNotFoundError: [WinError 2] Den angivne fil blev ikke fundet



I suspect this has something to do with FFMPEG not being installed on the other machines system ? Does anyone have an automatic solution for this when compiling the app or can it simply only run on machines that has FFMPEG installed ?


Thanks in advance !