
Recherche avancée
Médias (1)
-
Video d’abeille en portrait
14 mai 2011, par
Mis à jour : Février 2012
Langue : français
Type : Video
Autres articles (111)
-
Gestion générale des documents
13 mai 2011, parMédiaSPIP ne modifie jamais le document original mis en ligne.
Pour chaque document mis en ligne il effectue deux opérations successives : la création d’une version supplémentaire qui peut être facilement consultée en ligne tout en laissant l’original téléchargeable dans le cas où le document original ne peut être lu dans un navigateur Internet ; la récupération des métadonnées du document original pour illustrer textuellement le fichier ;
Les tableaux ci-dessous expliquent ce que peut faire MédiaSPIP (...) -
Des sites réalisés avec MediaSPIP
2 mai 2011, parCette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page. -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (12263)
-
The use cases for a element in HTML
1er janvier 2014, par silviaThe W3C HTML WG and the WHATWG are currently discussing the introduction of a <main> element into HTML.
The <main> element has been proposed by Steve Faulkner and is specified in a draft extension spec which is about to be accepted as a FPWD (first public working draft) by the W3C HTML WG. This implies that the W3C HTML WG will be looking for implementations and for feedback by implementers on this spec.
I am supportive of the introduction of a <main> element into HTML. However, I believe that the current spec and use case list don’t make a good enough case for its introduction. Here are my thoughts.
Main use case : accessibility
In my opinion, the main use case for the introduction of <main> is accessibility.
Like any other users, when blind users want to perceive a Web page/application, they need to have a quick means of grasping the content of a page. Since they cannot visually scan the layout and thus determine where the main content is, they use accessibility technology (AT) to find what is known as “landmarks”.
“Landmarks” tell the user what semantic content is on a page : a header (such as a banner), a search box, a navigation menu, some asides (also called complementary content), a footer, …. and the most important part : the main content of the page. It is this main content that a blind user most often wants to skip to directly.
In the days of HTML4, a hidden “skip to content” link at the beginning of the Web page was used as a means to help blind users access the main content.
In the days of ARIA, the aria @role=main enables authors to avoid a hidden link and instead mark the element where the main content begins to allow direct access to the main content. This attribute is supported by AT – in particular screen readers – by making it part of the landmarks that AT can directly skip to.
Both the hidden link and the ARIA @role=main approaches are, however, band aids : they are being used by those of us that make “finished” Web pages accessible by adding specific extra markup.
A world where ARIA is not necessary and where accessibility developers would be out of a job because the normal markup that everyone writes already creates accessible Web sites/applications would be much preferable over the current world of band-aids.
Therefore, to me, the primary use case for a <main> element is to achieve exactly this better world and not require specialized markup to tell a user (or a tool) where the main content on a page starts.
An immediate effect would be that pages that have a <main> element will expose a “main” landmark to blind and vision-impaired users that will enable them to directly access that main content on the page without having to wade through other text on the page. Without a <main> element, this functionality can currently only be provided using heuristics to skip other semantic and structural elements and is for this reason not typically implemented in AT.
Other use cases
The <main> element is a semantic element not unlike other new semantic elements such as <header>, <footer>, <aside>, <article>, <nav>, or <section>. Thus, it can also serve other uses where the main content on a Web page/Web application needs to be identified.
Data mining
For data mining of Web content, the identification of the main content is one of the key challenges. Many scholarly articles have been published on this topic. This stackoverflow article references and suggests a multitude of approaches, but the accepted answer says “there’s no way to do this that’s guaranteed to work”. This is because Web pages are inherently complex and many <div>, <p>, <iframe> and other elements are used to provide markup for styling, notifications, ads, analytics and other use cases that are necessary to make a Web page complete, but don’t contribute to what a user consumes as semantically rich content. A <main> element will allow authors to pro-actively direct data mining tools to the main content.
Search engines
One particularly important “data mining” tool are search engines. They, too, have a hard time to identify which sections of a Web page are more important than others and employ many heuristics to do so, see e.g. this ACM article. Yet, they still disappoint with poor results pointing to findings of keywords in little relevant sections of a page rather than ranking Web pages higher where the keywords turn up in the main content area. A <main> element would be able to help search engines give text in main content areas a higher weight and prefer them over other areas of the Web page. It would be able to rank different Web pages depending on where on the page the search words are found. The <main> element will be an additional hint that search engines will digest.
Visual focus
On small devices, the display of Web pages designed for Desktop often causes confusion as to where the main content can be found and read, in particular when the text ends up being too small to be readable. It would be nice if browsers on small devices had a functionality (maybe a default setting) where Web pages would start being displayed as zoomed in on the main content. This could alleviate some of the headaches of responsive Web design, where the recommendation is to show high priority content as the first content. Right now this problem is addressed through stylesheets that re-layout the page differently depending on device, but again this is a band-aid solution. Explicit semantic markup of the main content can solve this problem more elegantly.
Styling
Finally, naturally, <main> would also be used to style the main content differently from others. You can e.g. replace a semantically meaningless <div id=”main”> with a semantically meaningful <main> where their position is identical. My analysis below shows, that this is not always the case, since oftentimes <div id=”main”> is used to group everything together that is not the header – in particular where there are multiple columns. Thus, the ease of styling a <main> element is only a positive side effect and not actually a real use case. It does make it easier, however, to adapt the style of the main content e.g. with media queries.
Proposed alternative solutions
It has been proposed that existing markup serves to satisfy the use cases that <main> has been proposed for. Let’s analyse these on some of the most popular Web sites. First let’s list the propsed algorithms.
Proposed solution No 1 : Scooby-Doo
On Sat, Nov 17, 2012 at 11:01 AM, Ian Hickson <ian@hixie.ch> wrote : | The main content is whatever content isn’t | marked up as not being main content (anything not marked up with <header>, | <aside>, <nav>, etc).
This implies that the first element that is not a <header>, <aside>, <nav>, or <footer> will be the element that we want to give to a blind user as the location where they should start reading. The algorithm is implemented in https://gist.github.com/4032962.
Proposed solution No 2 : First article element
On Sat, Nov 17, 2012 at 8:01 AM, Ian Hickson wrote : | On Thu, 15 Nov 2012, Ian Yang wrote : | > | > That’s a good idea. We really need an element to wrap all the <p>s, | > <ul>s, <ol>s, <figure>s, <table>s ... etc of a blog post. | | That’s called <article>.
This approach identifies the first <article> element on the page as containing the main content. Here’s the algorithm for this approach.
Proposed solution No 3 : An example heuristic approach
The readability plugin has been developed to make Web pages readable by essentially removing all the non-main content from a page. An early source of readability is available. This demonstrates what a heuristic approach can perform.
Analysing alternative solutions
Comparison
I’ve picked 4 typical Websites (top on Alexa) to analyse how these three different approaches fare. Ideally, I’d like to simply apply the above three scripts and compare pictures. However, since the semantic HTML5 elements <header>, <aside>, <nav>, and <footer> are not actually used by any of these Web sites, I don’t actually have this choice.
So, instead, I decided to make some assumptions of where these semantic elements would be used and what the outcome of applying the first two algorithms would be. I can then compare it to the third, which is a product so we can take screenshots.
Google.com
http://google.com – search for “Scooby Doo”.
The search results page would likely be built with :
- a <nav> menu for the Google bar
- a <header> for the search bar
- another <header> for the login section
- another <nav> menu for the search types
- a <div> to contain the rest of the page
- a <div> for the app bar with the search number
- a few <aside>s for the left and right column
- a set of <article>s for the search results
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element before the app bar in this case. Interestingly, there is a <div @id=main> already in the current Google results page, which “Scooby Doo” would likely also pick. However, there are a nav bar and two asides in this div, which clearly should not be part of the “main content”. Google actually placed a @role=main on a different element, namely the one that encapsulates all the search results.“First Article” would find the first search result as the “main content”. While not quite the same as what Google intended – namely all search results – it is close enough to be useful.
The “readability” result is interesting, since it is not able to identify the main text on the page. It is actually aware of this problem and brings a warning before displaying this page :
Facebook.com
A user page would likely be built with :
- a <header> bar for the search and login bar
- a <div> to contain the rest of the page
- an <aside> for the left column
- a <div> to contain the center and right column
- an <aside> for the right column
- a <header> to contain the center column “megaphone”
- a <div> for the status posting
- a set of <article>s for the home stream
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains all three columns. It’s actually a <div @id=content> already in the current Facebook user page, which “Scooby Doo” would likely also pick. However, Facebook selected a different element to place the @role=main : the center column.“First Article” would find the first news item in the home stream. This is clearly not what Facebook intended, since they placed the @role=main on the center column, above the first blog post’s title. “First Article” would miss that title and the status posting.
The “readability” result again disappoints but warns that it failed :
YouTube.com
A video page would likely be built with :
- a <header> bar for the search and login bar
- a <nav> for the menu
- a <div> to contain the rest of the page
- a <header> for the video title and channel links
- a <div> to contain the video with controls
- a <div> to contain the center and right column
- an <aside> for the right column with an <article> per related video
- an <aside> for the information below the video
- a <article> per comment below the video
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains the rest of the page. It’s actually a <div @id=content> already in the current YouTube video page, which “Scooby Doo” would likely also pick. However, YouTube’s related videos and comments are unlikely to be what the user would regard as “main content” – it’s the video they are after, which generously has a <div id=watch-player>.“First Article” would find the first related video or comment in the home stream. This is clearly not what YouTube intends.
The “readability” result is not quite as unusable, but still very bare :
Wikipedia.com
http://wikipedia.com (“Overscan” page)
A Wikipedia page would likely be built with :
- a <header> bar for the search, login and menu items
- a <div> to contain the rest of the page
- an &ls ; article> with title and lots of text
- <article> an <aside> with the table of contents
- several <aside>s for the left column
Good news : “Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains the rest of the page. It’s actually a <div id=”content” role=”main”> element on Wikipedia, which “Scooby Doo” would likely also pick.“First Article” would find the title and text of the main element on the page, but it would also include an <aside>.
The “readability” result is also in agreement.
Results
In the following table we have summarised the results for the experiments :
Site Scooby-Doo First article Readability Google.com FAIL SUCCESS FAIL Facebook.com FAIL FAIL FAIL YouTube.com FAIL FAIL FAIL Wikipedia.com SUCCESS SUCCESS SUCCESS Clearly, Wikipedia is the prime example of a site where even the simple approaches find it easy to determine the main content on the page. WordPress blogs are similarly successful. Almost any other site, including news sites, social networks and search engine sites are petty hopeless with the proposed approaches, because there are too many elements that are used for layout or other purposes (notifications, hidden areas) such that the pre-determined list of semantic elements that are available simply don’t suffice to mark up a Web page/application completely.
Conclusion
It seems that in general it is impossible to determine which element(s) on a Web page should be the “main” piece of content that accessibility tools jump to when requested, that a search engine should put their focus on, or that should be highlighted to a general user to read. It would be very useful if the author of the Web page would provide a hint through a <main> element where that main content is to be found.
I think that the <main> element becomes particularly useful when combined with a default keyboard shortcut in browsers as proposed by Steve : we may actually find that non-accessibility users will also start making use of this shortcut, e.g. to get to videos on YouTube pages directly without having to tab over search boxes and other interactive elements, etc. Worthwhile markup indeed.
-
The use cases for a element in HTML
1er janvier 2014, par silviaThe W3C HTML WG and the WHATWG are currently discussing the introduction of a <main> element into HTML.
The <main> element has been proposed by Steve Faulkner and is specified in a draft extension spec which is about to be accepted as a FPWD (first public working draft) by the W3C HTML WG. This implies that the W3C HTML WG will be looking for implementations and for feedback by implementers on this spec.
I am supportive of the introduction of a <main> element into HTML. However, I believe that the current spec and use case list don’t make a good enough case for its introduction. Here are my thoughts.
Main use case : accessibility
In my opinion, the main use case for the introduction of <main> is accessibility.
Like any other users, when blind users want to perceive a Web page/application, they need to have a quick means of grasping the content of a page. Since they cannot visually scan the layout and thus determine where the main content is, they use accessibility technology (AT) to find what is known as “landmarks”.
“Landmarks” tell the user what semantic content is on a page : a header (such as a banner), a search box, a navigation menu, some asides (also called complementary content), a footer, …. and the most important part : the main content of the page. It is this main content that a blind user most often wants to skip to directly.
In the days of HTML4, a hidden “skip to content” link at the beginning of the Web page was used as a means to help blind users access the main content.
In the days of ARIA, the aria @role=main enables authors to avoid a hidden link and instead mark the element where the main content begins to allow direct access to the main content. This attribute is supported by AT – in particular screen readers – by making it part of the landmarks that AT can directly skip to.
Both the hidden link and the ARIA @role=main approaches are, however, band aids : they are being used by those of us that make “finished” Web pages accessible by adding specific extra markup.
A world where ARIA is not necessary and where accessibility developers would be out of a job because the normal markup that everyone writes already creates accessible Web sites/applications would be much preferable over the current world of band-aids.
Therefore, to me, the primary use case for a <main> element is to achieve exactly this better world and not require specialized markup to tell a user (or a tool) where the main content on a page starts.
An immediate effect would be that pages that have a <main> element will expose a “main” landmark to blind and vision-impaired users that will enable them to directly access that main content on the page without having to wade through other text on the page. Without a <main> element, this functionality can currently only be provided using heuristics to skip other semantic and structural elements and is for this reason not typically implemented in AT.
Other use cases
The <main> element is a semantic element not unlike other new semantic elements such as <header>, <footer>, <aside>, <article>, <nav>, or <section>. Thus, it can also serve other uses where the main content on a Web page/Web application needs to be identified.
Data mining
For data mining of Web content, the identification of the main content is one of the key challenges. Many scholarly articles have been published on this topic. This stackoverflow article references and suggests a multitude of approaches, but the accepted answer says “there’s no way to do this that’s guaranteed to work”. This is because Web pages are inherently complex and many <div>, <p>, <iframe> and other elements are used to provide markup for styling, notifications, ads, analytics and other use cases that are necessary to make a Web page complete, but don’t contribute to what a user consumes as semantically rich content. A <main> element will allow authors to pro-actively direct data mining tools to the main content.
Search engines
One particularly important “data mining” tool are search engines. They, too, have a hard time to identify which sections of a Web page are more important than others and employ many heuristics to do so, see e.g. this ACM article. Yet, they still disappoint with poor results pointing to findings of keywords in little relevant sections of a page rather than ranking Web pages higher where the keywords turn up in the main content area. A <main> element would be able to help search engines give text in main content areas a higher weight and prefer them over other areas of the Web page. It would be able to rank different Web pages depending on where on the page the search words are found. The <main> element will be an additional hint that search engines will digest.
Visual focus
On small devices, the display of Web pages designed for Desktop often causes confusion as to where the main content can be found and read, in particular when the text ends up being too small to be readable. It would be nice if browsers on small devices had a functionality (maybe a default setting) where Web pages would start being displayed as zoomed in on the main content. This could alleviate some of the headaches of responsive Web design, where the recommendation is to show high priority content as the first content. Right now this problem is addressed through stylesheets that re-layout the page differently depending on device, but again this is a band-aid solution. Explicit semantic markup of the main content can solve this problem more elegantly.
Styling
Finally, naturally, <main> would also be used to style the main content differently from others. You can e.g. replace a semantically meaningless <div id=”main”> with a semantically meaningful <main> where their position is identical. My analysis below shows, that this is not always the case, since oftentimes <div id=”main”> is used to group everything together that is not the header – in particular where there are multiple columns. Thus, the ease of styling a <main> element is only a positive side effect and not actually a real use case. It does make it easier, however, to adapt the style of the main content e.g. with media queries.
Proposed alternative solutions
It has been proposed that existing markup serves to satisfy the use cases that <main> has been proposed for. Let’s analyse these on some of the most popular Web sites. First let’s list the propsed algorithms.
Proposed solution No 1 : Scooby-Doo
On Sat, Nov 17, 2012 at 11:01 AM, Ian Hickson <ian@hixie.ch> wrote : | The main content is whatever content isn’t | marked up as not being main content (anything not marked up with <header>, | <aside>, <nav>, etc).
This implies that the first element that is not a <header>, <aside>, <nav>, or <footer> will be the element that we want to give to a blind user as the location where they should start reading. The algorithm is implemented in https://gist.github.com/4032962.
Proposed solution No 2 : First article element
On Sat, Nov 17, 2012 at 8:01 AM, Ian Hickson wrote : | On Thu, 15 Nov 2012, Ian Yang wrote : | > | > That’s a good idea. We really need an element to wrap all the <p>s, | > <ul>s, <ol>s, <figure>s, <table>s ... etc of a blog post. | | That’s called <article>.
This approach identifies the first <article> element on the page as containing the main content. Here’s the algorithm for this approach.
Proposed solution No 3 : An example heuristic approach
The readability plugin has been developed to make Web pages readable by essentially removing all the non-main content from a page. An early source of readability is available. This demonstrates what a heuristic approach can perform.
Analysing alternative solutions
Comparison
I’ve picked 4 typical Websites (top on Alexa) to analyse how these three different approaches fare. Ideally, I’d like to simply apply the above three scripts and compare pictures. However, since the semantic HTML5 elements <header>, <aside>, <nav>, and <footer> are not actually used by any of these Web sites, I don’t actually have this choice.
So, instead, I decided to make some assumptions of where these semantic elements would be used and what the outcome of applying the first two algorithms would be. I can then compare it to the third, which is a product so we can take screenshots.
Google.com
http://google.com – search for “Scooby Doo”.
The search results page would likely be built with :
- a <nav> menu for the Google bar
- a <header> for the search bar
- another <header> for the login section
- another <nav> menu for the search types
- a <div> to contain the rest of the page
- a <div> for the app bar with the search number
- a few <aside>s for the left and right column
- a set of <article>s for the search results
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element before the app bar in this case. Interestingly, there is a <div @id=main> already in the current Google results page, which “Scooby Doo” would likely also pick. However, there are a nav bar and two asides in this div, which clearly should not be part of the “main content”. Google actually placed a @role=main on a different element, namely the one that encapsulates all the search results.“First Article” would find the first search result as the “main content”. While not quite the same as what Google intended – namely all search results – it is close enough to be useful.
The “readability” result is interesting, since it is not able to identify the main text on the page. It is actually aware of this problem and brings a warning before displaying this page :
Facebook.com
A user page would likely be built with :
- a <header> bar for the search and login bar
- a <div> to contain the rest of the page
- an <aside> for the left column
- a <div> to contain the center and right column
- an <aside> for the right column
- a <header> to contain the center column “megaphone”
- a <div> for the status posting
- a set of <article>s for the home stream
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains all three columns. It’s actually a <div @id=content> already in the current Facebook user page, which “Scooby Doo” would likely also pick. However, Facebook selected a different element to place the @role=main : the center column.“First Article” would find the first news item in the home stream. This is clearly not what Facebook intended, since they placed the @role=main on the center column, above the first blog post’s title. “First Article” would miss that title and the status posting.
The “readability” result again disappoints but warns that it failed :
YouTube.com
A video page would likely be built with :
- a <header> bar for the search and login bar
- a <nav> for the menu
- a <div> to contain the rest of the page
- a <header> for the video title and channel links
- a <div> to contain the video with controls
- a <div> to contain the center and right column
- an <aside> for the right column with an <article> per related video
- an <aside> for the information below the video
- a <article> per comment below the video
“Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains the rest of the page. It’s actually a <div @id=content> already in the current YouTube video page, which “Scooby Doo” would likely also pick. However, YouTube’s related videos and comments are unlikely to be what the user would regard as “main content” – it’s the video they are after, which generously has a <div id=watch-player>.“First Article” would find the first related video or comment in the home stream. This is clearly not what YouTube intends.
The “readability” result is not quite as unusable, but still very bare :
Wikipedia.com
http://wikipedia.com (“Overscan” page)
A Wikipedia page would likely be built with :
- a <header> bar for the search, login and menu items
- a <div> to contain the rest of the page
- an &ls ; article> with title and lots of text
- <article> an <aside> with the table of contents
- several <aside>s for the left column
Good news : “Scooby Doo” would find the first element after the headers as the “main content”. This is the element that contains the rest of the page. It’s actually a <div id=”content” role=”main”> element on Wikipedia, which “Scooby Doo” would likely also pick.“First Article” would find the title and text of the main element on the page, but it would also include an <aside>.
The “readability” result is also in agreement.
Results
In the following table we have summarised the results for the experiments :
Site Scooby-Doo First article Readability Google.com FAIL SUCCESS FAIL Facebook.com FAIL FAIL FAIL YouTube.com FAIL FAIL FAIL Wikipedia.com SUCCESS SUCCESS SUCCESS Clearly, Wikipedia is the prime example of a site where even the simple approaches find it easy to determine the main content on the page. WordPress blogs are similarly successful. Almost any other site, including news sites, social networks and search engine sites are petty hopeless with the proposed approaches, because there are too many elements that are used for layout or other purposes (notifications, hidden areas) such that the pre-determined list of semantic elements that are available simply don’t suffice to mark up a Web page/application completely.
Conclusion
It seems that in general it is impossible to determine which element(s) on a Web page should be the “main” piece of content that accessibility tools jump to when requested, that a search engine should put their focus on, or that should be highlighted to a general user to read. It would be very useful if the author of the Web page would provide a hint through a <main> element where that main content is to be found.
I think that the <main> element becomes particularly useful when combined with a default keyboard shortcut in browsers as proposed by Steve : we may actually find that non-accessibility users will also start making use of this shortcut, e.g. to get to videos on YouTube pages directly without having to tab over search boxes and other interactive elements, etc. Worthwhile markup indeed.
-
Finding Optimal Code Coverage
7 mars 2012, par Multimedia Mike — ProgrammingA few months ago, I published a procedure for analyzing code coverage of the test suites exercised in FFmpeg and Libav. I used it to add some more tests and I have it on good authority that it has helped other developers fill in some gaps as well (beginning with students helping out with the projects as part of the Google Code-In program). Now I’m wondering about ways to do better.
Current Process
When adding a test that depends on a sample (like a demuxer or decoder test), it’s ideal to add a sample that’s A) small, and B) exercises as much of the codebase as possible. When I was studying code coverage statistics for the WC4-Xan video decoder, I noticed that the sample didn’t exercise one of the 2 possible frame types. So I scouted samples until I found one that covered both types, trimmed the sample down, and updated the coverage suite.I started wondering about a method for finding the optimal test sample for a given piece of code, one that exercises every code path in a module. Okay, so that’s foolhardy in the vast majority of cases (although I was able to add one test spec that pushed a module’s code coverage from 0% all the way to 100% — but the module in question only had 2 exercisable lines). Still, given a large enough corpus of samples, how can I find the smallest set of samples that exercise the complete codebase ?
This almost sounds like an NP-complete problem. But why should that stop me from trying to find a solution ?
Science Project
Here’s the pitch :- Instrument FFmpeg with code coverage support
- Download lots of media to exercise a particular module
- Run FFmpeg against each sample and log code coverage statistics
- Distill the resulting data in some meaningful way in order to obtain more optimal code coverage
That first step sounds harsh– downloading lots and lots of media. Fortunately, there is at least one multimedia format in the projects that tends to be extremely small : ANSI. These are files that are designed to display elaborate scrolling graphics using text mode. Further, the FATE sample currently deployed for this test (TRE_IOM5.ANS) only exercises a little less than 50% of the code in libavcodec/ansi.c. I believe this makes the ANSI video decoder a good candidate for this experiment.
Procedure
First, find a site that hosts a lot ANSI files. Hi, sixteencolors.net. This site has lots (on the order of 4000) artpacks, which are ZIP archives that contain multiple ANSI files (and sometimes some other files). I scraped a list of all the artpack names.In an effort to be responsible, I randomized the list of artpacks and downloaded periodically and with limited bandwidth (
'wget --limit-rate=20k'
).Run ‘gcov’ on ansi.c in order to gather the full set of line numbers to be covered.
For each artpack, unpack the contents, run the instrumented FFmpeg on each file inside, run ‘gcov’ on ansi.c, and log statistics including the file’s size, the file’s location (artpack.zip:filename), and a comma-separated list of line numbers touched.
Definition of ‘Optimal’
The foregoing procedure worked and yielded useful, raw data. Now I have to figure out how to analyze it.I think it’s most desirable to have the smallest files (in terms of bytes) that exercise the most lines of code. To that end, I sorted the results by filesize, ascending. A Python script initializes a set of all exercisable line numbers in ansi.c, then iterates through each each file’s stats line, adding the file to the list of candidate samples if its set of exercised lines can remove any line numbers from the overall set of lines. Ideally, that set of lines should devolve to an empty set.
I think a second possible approach is to find the single sample that exercises the most code and then proceed with the previously described method.
Initial Results
So far, I have analyzed 13324 samples from 357 different artpacks provided by sixteencolors.net.Using the first method, I can find a set of samples that covers nearly 80% of ansi.c :
<br />
0 bytes: bad-0494.zip:5<br />
1 bytes: grip1293.zip:-ANSI---.---<br />
1 bytes: pur-0794.zip:.<br />
2 bytes: awe9706.zip:-ANSI───.───<br />
61 bytes: echo0197.zip:-(ART)-<br />
62 bytes: hx03.zip:HX005.DAT<br />
76 bytes: imp-0494.zip:IMPVIEW.CFG<br />
82 bytes: ice0010b.zip:_cont'd_.___<br />
101 bytes: bdp-0696.zip:BDP2.WAD<br />
112 bytes: plain12.zip:--------.---<br />
181 bytes: ins1295v.zip:-°VGA°-. н<br />
219 bytes: purg-22.zip:NEM-SHIT.ASC<br />
289 bytes: srg1196.zip:HOWTOREQ.JNK<br />
315 bytes: karma-04.zip:FASHION.COM<br />
318 bytes: buzina9.zip:ox-rmzzy.ans<br />
411 bytes: solo1195.zip:FU-BLAH1.RIP<br />
621 bytes: ciapak14.zip:NA-APOC1.ASC<br />
951 bytes: lght9404.zip:AM-TDHO1.LIT<br />
1214 bytes: atb-1297.zip:TX-ROKL.ASC<br />
2332 bytes: imp-0494.zip:STATUS.ANS<br />
3218 bytes: acepak03.zip:TR-STAT5.ANS<br />
6068 bytes: lgc-0193.zip:LGC-0193.MEM<br />
16778 bytes: purg-20.zip:EZ-HIR~1.JPG<br />
20582 bytes: utd0495.zip:LT-CROW3.ANS<br />
26237 bytes: quad0597.zip:MR-QPWP.GIF<br />
29208 bytes: mx-pack17.zip:mx-mobile-source-logo.jpg<br />
----<br />
109440 bytes total<br />A few notes about that list : Some of those filenames are comprised primarily of control characters. 133t, and all that. The first file is 0 bytes. I wondered if I should discard 0-length files but decided to keep those in, especially if they exercise lines that wouldn’t normally be activated. Also, there are a few JPEG and GIF files in the set. I should point out that I forced the tty demuxer using
-f tty
and there isn’t much in the way of signatures for this format. So, again, whatever exercises more lines is better.Using this same corpus, I tried approach 2– which single sample exercises the most lines of the decoder ? Answer : blde9502.zip:REQUEST.EXE. Huh. I checked it out and ‘file’ ID’s it as a MS-DOS executable. So, that approach wasn’t fruitful, at least not for this corpus since I’m forcing everything through this narrow code path.
Think About The Future
Where can I take this next ? The cloud ! I have people inside the search engine industry who have furnished me with extensive lists of specific types of multimedia files from around the internet. I also see that Amazon Web Services Elastic Compute Cloud (AWS EC2) instances don’t charge for incoming bandwidth.I think you can see where I’m going with this.
See Also :