Recherche avancée

Médias (1)

Mot : - Tags -/epub

Autres articles (53)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • L’utiliser, en parler, le critiquer

    10 avril 2011

    La première attitude à adopter est d’en parler, soit directement avec les personnes impliquées dans son développement, soit autour de vous pour convaincre de nouvelles personnes à l’utiliser.
    Plus la communauté sera nombreuse et plus les évolutions seront rapides ...
    Une liste de discussion est disponible pour tout échange entre utilisateurs.

  • Création définitive du canal

    12 mars 2010, par

    Lorsque votre demande est validée, vous pouvez alors procéder à la création proprement dite du canal. Chaque canal est un site à part entière placé sous votre responsabilité. Les administrateurs de la plateforme n’y ont aucun accès.
    A la validation, vous recevez un email vous invitant donc à créer votre canal.
    Pour ce faire il vous suffit de vous rendre à son adresse, dans notre exemple "http://votre_sous_domaine.mediaspip.net".
    A ce moment là un mot de passe vous est demandé, il vous suffit d’y (...)

Sur d’autres sites (10936)

  • ffmpeg extract multiple frames from single input causing SIGSEGV in node.js child_process on lambda env

    11 octobre 2023, par Andrew Still

    I'm trying to dynamically extract multiple different frames from single video input. So the command I'm calling looking like this

    


    ffmpeg -loglevel debug -hide_banner -t 13.269541 -y -ss 0 -i "input-s3-url" -ss 13.269541 -i "same-input-s3-url" -map 0:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.0.png -map 1:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.13.269541.png


    


    It works and everything is good, until I deploy it to lambda. Even though I'm using 10gb of RAM it still failing with error. Locally it works like a charm but not on lambda. I'm not sure what the problem here but i'm regularly (not always) getting SIGSEGV

    


    at ChildProcess.exithandler (node:child_process:402:12)
at ChildProcess.emit (node:events:513:28) 
at ChildProcess.emit (node:domain:489:12)
at maybeClose (node:internal/child_process: 1100:16)
at Process.ChildProcess._handle.onexit (node:internal/child_process:304:5) 
{
code: null, 
killed: false, 
signal: 'SIGSEGV'
cmd: '/opt/bin/ffmpeg -loglevel error -hide_banner -t 131.805393 -y -ss 0 -i "https: //


    


    Double-checked memory usage and it's doesn't look like a reason, but I'm not sure how correct this number

    


    Memory size : 10240 MB Max Memory used : 140 MB

    


    I'm think maybe it's because it's making requests for each input, at least that's what I saw in debug mode, but still have no idea what's the problem here, would appreciate any suggestions/optimizations/help. Thanks

    


    ffmpeg added on lambda using this layer - https://serverlessrepo.aws.amazon.com/applications/us-east-1/145266761615/ffmpeg-lambda-layer

    


  • ffmpeg extract multiple frames from single input

    10 octobre 2023, par Andrew Still

    I'm trying to dynamically extract multiple different frames from single video input. So the command I'm calling looking like this

    


    ffmpeg -loglevel debug -hide_banner -t 13.269541 -y -ss 0 -i "input-s3-url" -ss 13.269541 -i "same-input-s3-url" -map 0:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.0.png -map 1:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.13.269541.png


    


    It works and everything is good, until I deploy it to lambda. Even though I'm using 10gb of RAM it still failing with error. Locally it works like a charm but not on lambda. I'm not sure what the problem here but i'm regularly (not always) getting SIGSEGV

    


    enter image description here

    


    Double-checked memory usage and it's doesn't look like a reason, but I'm not sure how correct this number

    


    enter image description here

    


    I'm think maybe it's because it's making requests for each input, at least that's what I saw in debug mode, but still have no idea what's the problem here, would appreciate any suggestions/optimizations/help. Thanks

    


    ffmpeg added on lambda using this layer - https://serverlessrepo.aws.amazon.com/applications/us-east-1/145266761615/ffmpeg-lambda-layer

    


  • FFmpeg transcode GIF into Mp4 and Mp4 to AVI using GPU

    9 octobre 2023, par Cristian

    I'm trying to convert GIF animated to mp4 and mp4 to AVI with FFmpeg.

    


    I started to use just the CPU, but I have to process millions of GIFs/mp4 content pieces. So, I started to have a lot of errors processing them, and it ended as a bottleneck. Therefore, I'm trying to use GPU to process the videos.

    


    Converting GIF to mp4 with CPU, I run the following command :

    


    ffmpeg -i animated.gif -movflags faststart -pix_fmt yuv420p -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" video.mp4


    


    Using the GPU I'm trying the following :

    


    ffmpeg
  -y
  -hwaccel nvdec
  -hwaccel_output_format cuda
  -i gifInputPath
  -threads 1
  -filter_threads 1
  -c:v h264_nvenc
  -vf hwupload_cuda,scale_cuda=-2:320:240:format=yuv420p
  -gpu 0
   mp4VideoPath


    


    The above command generates an exit status 1.

    


    The following is the dmesg command log

    


    Converting mp4 videos to AVI videos I'm running the following command

    


    ffmpeg
-i videoInputPath
-vcodec rawvideo
-pix_fmt yuv420p
-acodec pcm_s16le
-ar 44100
-ac 2
-s 320x240
-r 4
-f avi
aviOutputVideoPath


    


    For GPU I tried :

    


    ffmpeg
 -y
 -hwaccel cuda
 -hwaccel_output_format cuda
 -i videoInputPath
 -threads 1
 -filter_threads 1
 -c:a pcm_s16le
 -ac 2
 -ar 44100
 -c:v h264_nvenc
 -vf hwupload_cudascale_cuda=-2:320:240:format=yuv420p
 -r 4
 -f avi
 -gpu 0
 aviOutputVideoPath


    


    The following is the dmseg output is log

    


      

    1. What should be the best command for converting the GIF into Mp4 and Mp4 into AVI based on CPU configuration using the GPU(Amazon Nvidia t4) for best performance, low CPU, and moderated GPU consumption ?

      


    2. 


    3. What are the best suggestions to Process these content pieces concurrently using GPU ?

      


    4. 


    


    Note : I'm using Golang to execute the FFmpeg commands.