
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (79)
-
Participer à sa traduction
10 avril 2011Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
Actuellement MediaSPIP n’est disponible qu’en français et (...) -
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Possibilité de déploiement en ferme
12 avril 2011, parMediaSPIP peut être installé comme une ferme, avec un seul "noyau" hébergé sur un serveur dédié et utilisé par une multitude de sites différents.
Cela permet, par exemple : de pouvoir partager les frais de mise en œuvre entre plusieurs projets / individus ; de pouvoir déployer rapidement une multitude de sites uniques ; d’éviter d’avoir à mettre l’ensemble des créations dans un fourre-tout numérique comme c’est le cas pour les grandes plate-formes tout public disséminées sur le (...)
Sur d’autres sites (12738)
-
ffmpeg + AWS Lambda issues. Won't compress full video
7 juillet 2022, par Joesph Stah LynnSo I followed this tutorial to set everything up, and changed the function a bit to compress video, but no matter what I try, on larger videos (basically anything over 50-100MB), the output file will always be cut short, and depending on the encoding settings I'm using, will be cut by different amounts. I tried using the solution found here, adding a -nostdin flag to my ffmpeg command, but that also didn't seem to fix the issue.

Another odd thing, is no matter what I try, if I remove the '-f mpegts' flag, the output video will be 0B.

My Lambda function is set up with 3008MB of Memory (submitted a ticket to get my limit upped so I can use the full 10240MB available), and 2048MB of Ephemeral storage (I honestly am not sure if I need anything more than the minimum 512, but I upped it to try and fix the issue). When I check my cloudwatch logs, on really large files, it will occasionally time out, but other than that, I will get no error messages, just the standard start, end, and billable time messages.

This is the code for my lambda function.


import json
import os
import subprocess
import shlex
import boto3

S3_DESTINATION_BUCKET = "rw-video-out"
SIGNED_URL_TIMEOUT = 600

def lambda_handler(event, context):

 s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
 s3_source_key = event['Records'][0]['s3']['object']['key']

 s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
 s3_destination_filename = s3_source_basename + "-comp.mp4"

 s3_client = boto3.client('s3')
 s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)

 ffmpeg_cmd = f"/opt/bin/ffmpeg -nostdin -i {s3_source_signed_url} -f mpegts libx264 -preset fast -crf 28 -c:a copy - "
 command1 = shlex.split(ffmpeg_cmd)
 p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 s3 = boto3.resource('s3')
 s3.Object(s3_source_bucket,s3_source_key).delete()

 return {
 'statusCode': 200,
 'body': json.dumps('Processing complete successfully')
 }



This is the code from the solution I mentioned, but when I try using this code, I get output.mp4 not found errors


def lambda_handler(event, context):
 print(event)
 os.chdir('/tmp')
 s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
 s3_source_key = event['Records'][0]['s3']['object']['key']

 s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
 s3_destination_filename = s3_source_basename + ".mp4"

 s3_client = boto3.client('s3')
 s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)
 print(s3_source_signed_url)
 s3_client.download_file(s3_source_bucket,s3_source_key,s3_source_key)
 # ffmpeg_cmd = "/opt/bin/ffmpeg -framerate 25 -i \"" + s3_source_signed_url + "\" output.mp4 "
 ffmpeg_cmd = f"/opt/bin/ffmpeg -framerate 25 -i {s3_source_key} output.mp4 "
 # command1 = shlex.split(ffmpeg_cmd)
 # print(command1)
 os.system(ffmpeg_cmd)
 # os.system('ls')
 # p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 file = 'output.mp4'
 resp = s3_client.put_object(Body=open(file,"rb"), Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 # resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 s3 = boto3.resource('s3')
 s3.Object(s3_source_bucket,s3_source_key).delete()
 return {
 'statusCode': 200,
 'body': json.dumps('Processing complete successfully')
 }



Any help would be greatly appreciated.


-
lavc/aarch64 : motion estimation functions in neon
26 juin 2022, par Swinney, Jonathanlavc/aarch64 : motion estimation functions in neon
- ff_pix_abs16_neon
- ff_pix_abs16_xy2_neonIn direct micro benchmarks of these ff functions verses their C implementations,
these functions performed as follows on AWS Graviton 3.ff_pix_abs16_neon :
pix_abs_0_0_c : 141.1
pix_abs_0_0_neon : 19.6ff_pix_abs16_xy2_neon :
pix_abs_0_3_c : 269.1
pix_abs_0_3_neon : 39.3Tested with :
./tests/checkasm/checkasm —test=motion —bench —disable-linux-perfSigned-off-by : Jonathan Swinney <jswinney@amazon.com>
Signed-off-by : Martin Storsjö <martin@martin.st>- [DH] libavcodec/aarch64/Makefile
- [DH] libavcodec/aarch64/me_cmp_init_aarch64.c
- [DH] libavcodec/aarch64/me_cmp_neon.S
- [DH] libavcodec/me_cmp.c
- [DH] libavcodec/me_cmp.h
- [DH] tests/checkasm/Makefile
- [DH] tests/checkasm/checkasm.c
- [DH] tests/checkasm/checkasm.h
- [DH] tests/checkasm/motion.c
- [DH] tests/fate/checkasm.mak
-
FFMPEG on Heroku exceeds memory quota in testing
5 juillet 2022, par Patrick VelliaAfter following this tutorial, and getting it to work locally on my own development environment, before really getting my hands dirty and working deeper on my own project implementation, I decided to push it up to Heroku to test in a staging environment.


I had to have Heroku add the FFMPEG build-pack and turn on the Redis Server for ActionCable to work.


I didn't link the staging to a cloud storage bucket on Google or Amazon yet, just allowed it to upload directly to the dymo disk for testing. So it would go into the storage directory as it would in development for now.


the test MOV file is 186 MB in size.


The system uploaded the file fine.


According to the logs, it then copied the file from storage to tmp as the tutorial has us do.


Then it called streamio-ffmpeg's transcode method.


At this point, Heroku forcibly kills the dymo because it far exceeds the memory quota.


As this is a test environment, it's only on the free tier of Heroku.


I'm thinking I won't be able to directly process video projects on Heroku itself, unless I'm wrong ? Would it be better to call an API like Cloud Functions or Amazon Lambda, or spin up a Compute Engine long enough to process the FFMPEG command ?