Recherche avancée

Médias (91)

Autres articles (56)

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

Sur d’autres sites (11311)

  • Efficient way to stream a sequence of frames

    3 juin 2020, par DoriHp 0

    I'm facing with an issue : I implemented a device to detect stranger for my home, which includes inputs from some IP camera and use a tensorflow model to process frame got from them.

    



    Now I want to build a dashboard (use Flask or Django - python framework as backend) to streaming the processed frames I got from the system, and if possible, do some transform on them (such as stack multi frames into one, etc), and run the server so I can watch it from distances. Currently, I'm sending frame by frame as independent images but it costs so much bandwidth. I read how h264 encoder work and felt very exicted about it. Now, the question is, how can I use h264 or any encoder like it transfer my data and reduce the bandwidth ?

    


  • Sequelize FFMPEG get video after upload on NodeJs

    30 juin 2020, par jjplack

    Hello After upload a video to db using sequelize, i would like to edit it using FFMPEG

    


    So to get the video is just point the model attribute to FFMPEG ?

    


    Because using the file path is not editing the video.

    


    For exemple :

    


    fastify.route({
    method: "POST",
    url: "/posts",
    preHandler: upload.single("video"),

    handler: async function(request, reply) {
      const { Post } = fastify.sequelize;

      const videoPath = "./public/uploads/";

 

     

      const post = await Post.create({
        video: request.file.path,
        title: request.body.title,
   
      });
      reply.code(201).send(post);


 

try {
   const process = new ffmpeg(post.video);
  process.then(function (video) {
    video.addCommand('-ss', '00:01:00')
    video.addCommand('-vframes', '1')
    video.save(videoPath, function (error, file) {
        if (!error)
          console.log('Video file: ' + file);
      });
  }, function (err) {
    console.log('Error: ' + err);
  });
} catch (e) {

  console.log(e.msg);

}
      
    }
  });


    


  • dnn/native : add native support for 'add'

    10 avril 2020, par Guo, Yejun
    dnn/native : add native support for 'add'
    

    It can be tested with the model file generated with below python script :

    import tensorflow as tf
    import numpy as np
    import imageio

    in_img = imageio.imread('input.jpg')
    in_img = in_img.astype(np.float32)/255.0
    in_data = in_img[np.newaxis, :]

    x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    z1 = 0.039 + x
    z2 = x + 0.042
    z3 = z1 + z2
    z4 = z3 - 0.381
    z5 = z4 - x
    y = tf.math.maximum(z5, 0.0, name='dnn_out')

    sess=tf.Session()
    sess.run(tf.global_variables_initializer())

    graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
    tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

    print("image_process.pb generated, please use \
    path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

    output = sess.run(y, feed_dict=x : in_data)
    imageio.imsave("out.jpg", np.squeeze(output))

    Signed-off-by : Guo, Yejun <yejun.guo@intel.com>

    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
    • [DH] tools/python/convert_from_tensorflow.py
    • [DH] tools/python/convert_header.py