
Recherche avancée
Médias (3)
-
Valkaama DVD Cover Outside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
Valkaama DVD Label
4 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Image
-
Valkaama DVD Cover Inside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
Autres articles (111)
-
Submit bugs and patches
13 avril 2011Unfortunately a software is never perfect.
If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
You may also (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (13887)
-
Unable to open audio file on Heroku using Librosa
15 mars 2020, par Rohan BojjaI have a feature extraction REST API written in Python using the Librosa library (Extracting audio features), it receives an audio file through HTTP POST and responds with a list of features(such as MFCC,etc).
Since librosa depends on SoundFile (libsndfile1 / libsndfile-dev), it doesn’t support all the formats, I’m converting the audio file using ffmpeg-python wrapper (https://kkroening.github.io/ffmpeg-python/) .
It works just fine on my Windows 10 machine with Conda, but when I deploy it on Heroku, the librosa.load() functions returns an unknown format error, no matter what format I convert it to. I have tried FLAC, AIFF and WAV.
My first guess is that the converted format isn’t supported by libsndfile1, but it works on my local server (plus, their documentation says AIFF and WAV are supported), so I’m a little lost.
I have attached all the relevant snippets of code below, I can provide anything extra if necessary. Any help is highly appreciated. Thanks.
UPDATE1 :
I am using pipes instead of writing and reading from disk, worth a mention as the question could be misleading otherwise.
The log :
File "/app/app.py", line 31, in upload
x , sr = librosa.load(audioFile,mono=True,duration=5)
File "/app/.heroku/python/lib/python3.6/site-packages/librosa/core/audio.py", line 164, in load
six.reraise(*sys.exc_info())
File "/app/.heroku/python/lib/python3.6/site-packages/six.py", line 703, in reraise
raise value
File "/app/.heroku/python/lib/python3.6/site-packages/librosa/core/audio.py", line 129, in load
with sf.SoundFile(path) as sf_desc:
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 629, in __init__
self._file = self._open(file, mode_int, closefd)
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 1184, in _open
"Error opening {0!r}: ".format(self.name))
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 1357, in _error_check
raise RuntimeError(prefix + _ffi.string(err_str).decode('utf-8', 'replace'))
RuntimeError: Error opening <_io.BytesIO object at 0x7f46ad28beb8>: File contains data in an unknown format.
10.69.244.94 - - [15/Mar/2020:12:37:28 +0000] "POST /receiveWav HTTP/1.1" 500 290 "-" "curl/7.55.1"Flask/Librosa code deployed on Heroku (app.py) :
from flask import Flask, jsonify, request
import scipy.optimize
import os,pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
import librosa
import logging
import soundfile as sf
from pydub import AudioSegment
import subprocess as sp
import ffmpeg
from io import BytesIO
logging.basicConfig(level=logging.DEBUG)
app = Flask(__name__)
@app.route('/receiveWav',methods = ['POST'])
def upload():
if(request.method == 'POST'):
f = request.files['file']
app.logger.info(f'AUDIO FORMAT\n\n\n\n\n\n\n\n\n\n: {f}')
proc = (
ffmpeg.input('pipe:')
.output('pipe:', format='aiff')
.run_async(pipe_stdin=True,pipe_stdout=True, pipe_stderr=True)
)
audioFile,err = proc.communicate(input=f.read())
audioFile = BytesIO(audioFile)
scaler = pickle.load(open("scaler.ok","rb"))
x , sr = librosa.load(audioFile,mono=True,duration=5)
y=x
#Extract the features
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
rmse = librosa.feature.rms(y=y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
features = f'{np.mean(chroma_stft)} {np.mean(rmse)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'
for e in mfcc:
features += f' {np.mean(e)}'
input_data2 = np.array([float(i) for i in features.split(" ")]).reshape(1,-1)
input_data2 = scaler.transform(input_data2)
return jsonify(input_data2.tolist())
# driver function
if __name__ == '__main__':
app.run(debug = True)Aptfile :
libsndfile1
libsndfile-dev
libav-tools
libavcodec-extra-53
libavcodec-extra-53
ffmpegrequirements.txt :
aniso8601==8.0.0
audioread==2.1.8
certifi==2019.11.28
cffi==1.14.0
Click==7.0
decorator==4.4.2
ffmpeg-python==0.2.0
Flask==1.1.1
Flask-RESTful==0.3.8
future==0.18.2
gunicorn==20.0.4
itsdangerous==1.1.0
Jinja2==2.11.1
joblib==0.14.1
librosa==0.7.2
llvmlite==0.31.0
MarkupSafe==1.1.1
marshmallow==3.2.2
numba==0.48.0
numpy==1.18.1
pycparser==2.20
pydub==0.23.1
pytz==2019.3
resampy==0.2.2
scikit-learn==0.22.2.post1
scipy==1.4.1
six==1.14.0
SoundFile==0.10.3.post1
Werkzeug==1.0.0
wincertstore==0.2 -
i am getting when i am trying to run Ffmpegrabberframe on alpine image [closed]
18 mars 2020, par avinash tiwari# # A fatal error has been detected by the Java Runtime Environment :
# SIGSEGV (0xb) at pc=0x000000000000dc56, pid=446, tid=0x00007fd3c478db20 # # JRE version : OpenJDK Runtime Environment
(8.0_242-b08) (build 1.8.0_242-b08) # Java VM : OpenJDK 64-Bit Server
VM (25.242-b08 mixed mode linux-amd64 compressed oops) # Derivative :
IcedTea 3.15.0 # Distribution : Custom build (Wed Jan 29 10:43:50 UTC
2020) # Problematic frame : # C 0x000000000000dc56 # # Failed to
write core dump. Core dumps have been disabled. To enable core
dumping, try "ulimit -c unlimited" before starting Java again # # An
error report file with more information is saved as : #
/builds/had/tip/asset-delivery/firstgen-ingestion---backend/hs_err_pid446.log# If you would like to submit a bug report, please include # instructions on how to reproduce the bug and visit : #
https://icedtea.classpath.org/bugzilla # Exception in thread
"Thread-8" java.io.EOFException at
java.io.ObjectInputStream$BlockDataInputStream.peekByte(ObjectInputStream.java:3015)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1576)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:465)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:423)
at
org.scalatest.tools.Framework$ScalaTestRunner$Skeleton$1$React.react(Framework.scala:818)
at
org.scalatest.tools.Framework$ScalaTestRunner$Skeleton$1.run(Framework.scala:807)def extractAVI(rawDrivePath: String): List[String] = {
var errorList: List[String] = List.empty
FileUtils.listFiles(new File(rawDrivePath), new SuffixFileFilter(".avi"), TrueFileFilter.INSTANCE)
.asScala.toList.foreach(aviFile => {
var grabber: FFmpegFrameGrabber = null
var aviStream: InputStream = null
var isFailedExtraction: Boolean = false
try {
LOGGER.info(s"--------inside try----------${aviFile.getAbsolutePath}")
aviStream = new FileInputStream(aviFile.getAbsolutePath)
LOGGER.info("--------create grabber----------")
grabber = new FFmpegFrameGrabber(aviStream)
LOGGER.info("--------created grabber extraction of drives----------")
grabber.start()
LOGGER.info("--------start grabber of drives----------")
var count: Int = 1
for (frame <- Iterator.continually(grabber.grabImage()).takeWhile(_ != null)) {
ImageIO.write(converter.convert(frame), "jpg", new File(aviFile.getParent, "capture-" + count + ".jpg"))
count += 1
}
grabber.stop()
} catch {
case ex: Exception => {
LOGGER.info(s"Error while extracting images for ${aviFile.getAbsolutePath} {}", ex)
errorList :+= s"${aviFile.getAbsolutePath.replace(rawDrivePath, "")} -> ${ex.getMessage}"
isFailedExtraction = true
LOGGER.info("last inside catch")
}
} finally {
// Close the video file
LOGGER.info(s"inside finally ")
if (grabber != null)
grabber.release()
if (aviStream != null)
aviStream.close()
if (aviFile.exists() && !isFailedExtraction) {
LOGGER.debug(s"Deleting ${aviFile.getAbsolutePath}")
FileUtils.deleteQuietly(aviFile)
}
}
}) -
FFmpeg psycho-visual options - psy-rdoq
7 avril 2020, par SLVRI'm new to encoding and I like to do my encodings in x265 10bit. Currently, I'm facing a little issue with ffmpeg. I noticed when I'm using libx265 encoder output file looks a little bit blurred or small detail loss. Code I used to do my encodes is



ffmpeg -i input.mp4 -c:v libx265 -preset medium -crf 22 -pix_fmt yuv420p10le -c:a copy -y output-x26510bit.mkv




I've found out psycho-visual options might help in this case. I modified my code in to



ffmpeg -i input.mp4 -c:v libx265 -preset medium -crf 22 -pix_fmt yuv420p10le -psy-rd 2 -psy-rdoq 4 --rdoq-level 1 -c:a copy -y output-x26510bit.mkv




When I issue the above command, I get an error code



C:\Users\abc\Desktop\1>ffmpeg -i input.mp4 -c:v libx265 -preset medium -crf 22 -pix_fmt yuv420p10le -psy-rd 2 -psy-rdoq
 4 -rdoq-level 1 -c:a copy -y output-x26510bit.mkv
ffmpeg version git-2020-04-03-52523b6 Copyright (c) 2000-2020 the FFmpeg developers
 built with gcc 9.3.1 (GCC) 20200328
 configuration: --enable-gpl --enable-version3 --enable-sdl2 --enable-fontconfig --enable-gnutls --enable-iconv --enabl
e-libass --enable-libdav1d --enable-libbluray --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enab
le-libopencore-amrwb --enable-libopenjpeg --enable-libopus --enable-libshine --enable-libsnappy --enable-libsoxr --enabl
e-libsrt --enable-libtheora --enable-libtwolame --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx264 --
enable-libx265 --enable-libxml2 --enable-libzimg --enable-lzma --enable-zlib --enable-gmp --enable-libvidstab --enable-l
ibvmaf --enable-libvorbis --enable-libvo-amrwbenc --enable-libmysofa --enable-libspeex --enable-libxvid --enable-libaom
--enable-libmfx --enable-ffnvcodec --enable-cuda-llvm --enable-cuvid --enable-d3d11va --enable-nvenc --enable-nvdec --en
able-dxva2 --enable-avisynth --enable-libopenmpt --enable-amf
 libavutil 56. 42.102 / 56. 42.102
 libavcodec 58. 77.101 / 58. 77.101
 libavformat 58. 42.100 / 58. 42.100
 libavdevice 58. 9.103 / 58. 9.103
 libavfilter 7. 77.101 / 7. 77.101
 libswscale 5. 6.101 / 5. 6.101
 libswresample 3. 6.100 / 3. 6.100
 libpostproc 55. 6.100 / 55. 6.100
Unrecognized option 'psy-rdoq'.
Error splitting the argument list: Option not found




How do I solve this issue