
Recherche avancée
Autres articles (45)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...) -
Other interesting software
13 avril 2011, parWe don’t claim to be the only ones doing what we do ... and especially not to assert claims to be the best either ... What we do, we just try to do it well and getting better ...
The following list represents softwares that tend to be more or less as MediaSPIP or that MediaSPIP tries more or less to do the same, whatever ...
We don’t know them, we didn’t try them, but you can take a peek.
Videopress
Website : http://videopress.com/
License : GNU/GPL v2
Source code : (...)
Sur d’autres sites (5728)
-
ffmpeg compilation problem : avcodec_find_decoder always returns null
15 mars 2016, par AdionI recently tried to upgrade the ffmpeg libraries I use in my Mac OS X application by downloading and compiling ffmpeg from source.
My code works correctly with pre-compiled libraries of the same version on windows.
On Mac OS X, the library appears to work (it can open the file and find the streams and codecs used), but when it gets to avcodec_find_decoder, this function always returns null.The code has worked with an older version of the library (compiled a year ago on Mac OS X 10.5)
I configured fmpeg using
./configure --extra-cflags="-arch i386" --extra-ldflags='-arch i386' --arch=x86_32 --target-os=darwin --enable-cross-compile --disable-indev=jack --enable-shared --disable-static
I checked config.mak, and it appears to have the decoders for the file types I tried enabled (ogg, vorbis, avi, mkv, ...)
I also checked that the correct header files have been used and that the newly compiled library is used.I have found only some older posts relating to this issue, but without any solution :
http://lists.mplayerhq.hu/pipermail/ffmpeg-devel/2007-January/021399.html
http://libav-users.943685.n4.nabble.com/avcodec-find-decoder-problem-td944800.html
Edit : checking further, it appears av_codec_next(NULL) returns null as well, which means there isn’t a single codec available, or that first_avcodec in utils.c is not set (I actually haven’t found at all where this variable is set, I would have assumed av_register_all, but I can’t find it there)
-
aarch64 : vp9 : use alternative returns in the core loop filter function
14 novembre 2016, par Janne Grunauaarch64 : vp9 : use alternative returns in the core loop filter function
Since aarch64 has enough free general purpose registers use them to
branch to the appropiate storage code. 1-2 cycles faster for the
functions using loop_filter 8/16, ... on a cortex-a53. Mixed results
(up to 2 cycles faster/slower) on a cortex-a57. -
tf.contrib.signal.stft returns an empty matrix
9 décembre 2017, par matt-pielatThis is the piece of code I run :
import tensorflow as tf
sess = tf.InteractiveSession()
filename = 'song.mp3' # 30 second mp3 file
SAMPLES_PER_SEC = 44100
audio_binary = tf.read_file(filename)
pcm = tf.contrib.ffmpeg.decode_audio(audio_binary, file_format='mp3', samples_per_second=SAMPLES_PER_SEC, channel_count = 1)
stft = tf.contrib.signal.stft(pcm, frame_length=1024, frame_step=512, fft_length=1024)
sess.close()The mp3 file is properly decoded because
print(pcm.eval().shape)
returns :(1323119, 1)
And there are even some actual non-zero values when I print them with
print(pcm.eval()[1000:1010])
:[[ 0.18793298]
[ 0.16214484]
[ 0.16022217]
[ 0.15918455]
[ 0.16428113]
[ 0.19858395]
[ 0.22861415]
[ 0.2347789 ]
[ 0.22684409]
[ 0.20728172]]But for some reason
print(stft.eval().shape)
evaluates to :(1323119, 0, 513) # why the zero dimension?
And therefore
print(stft.eval())
is :[]
According to this the second dimension of the
tf.contrib.signal.stft
output is equal to the number of frames. Why are there no frames though ?