Recherche avancée

Médias (1)

Mot : - Tags -/getid3

Autres articles (82)

  • Formulaire personnalisable

    21 juin 2013, par

    Cette page présente les champs disponibles dans le formulaire de publication d’un média et il indique les différents champs qu’on peut ajouter. Formulaire de création d’un Media
    Dans le cas d’un document de type média, les champs proposés par défaut sont : Texte Activer/Désactiver le forum ( on peut désactiver l’invite au commentaire pour chaque article ) Licence Ajout/suppression d’auteurs Tags
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire. (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Qu’est ce qu’un masque de formulaire

    13 juin 2013, par

    Un masque de formulaire consiste en la personnalisation du formulaire de mise en ligne des médias, rubriques, actualités, éditoriaux et liens vers des sites.
    Chaque formulaire de publication d’objet peut donc être personnalisé.
    Pour accéder à la personnalisation des champs de formulaires, il est nécessaire d’aller dans l’administration de votre MediaSPIP puis de sélectionner "Configuration des masques de formulaires".
    Sélectionnez ensuite le formulaire à modifier en cliquant sur sont type d’objet. (...)

Sur d’autres sites (12353)

  • swscale : Undeprecate sws_getContext()

    4 août 2014, par Diego Biurrun
    swscale : Undeprecate sws_getContext()
    

    sws_getCachedContext is not a full replacement for the function.

    • [DBH] doc/APIchanges
    • [DBH] libswscale/swscale.h
    • [DBH] libswscale/utils.c
    • [DBH] libswscale/version.h
  • pyqt5 gui dependent on ffmpeg compiled with pyinstaller doesn't run on other machines ?

    19 octobre 2022, par Soren

    I am trying to create a simple Pyqt5 GUI for Windows 10 that uses OpenAI's model Whisper to transcribe a sound file and outputting the results in an Excel-file. It works on my own computer where I have installed the necessary dependencies for Whisper as stated on their github i.e. FFMEG. I provide a minimal example of my code below :

    


    # Import library
import whisper
import os
from PyQt5 import QtCore, QtGui, QtWidgets
import pandas as pd
import xlsxwriter


class Ui_Dialog(QtWidgets.QDialog):
    
    
    # Define functions to use in GUI
   
    # Define function for selecting input files
    def browsefiles(self, Dialog):
      
       
       # Make Dialog box and save files into tuple of paths
       files = QtWidgets.QFileDialog().getOpenFileNames(self, "Select soundfiles", os.getcwd(), "lyd(*mp2 *.mp3 *.mp4 *.m4a *wma *wav)")
       
       self.liste = []
       for url in range(len(files[0])):
           self.liste.append(files[0][url])   

    
    def model_load(self, Dialog):
               
        # Load picked model
        self.model = whisper.load_model(r'C:\Users\Søren\Downloads\Whisper_gui\models' + "\\" + self.combo_modelSize.currentText() + ".pt") ##the path is set to where the models are on the other machine
        
    
    def run(self, Dialog):
                
        # Make list for sound files
        liste_df = []
        
        
        # Running loop for interpreting and encoding sound files
        for url in range(len(self.liste)):
                          
            # Make dataframe
            df = pd.DataFrame(columns=["filename", "start", "end", "text"])
            
            # Run model
            result = self.model.transcribe(self.liste[url])
                            
            # Extract results
            for i in range(len(result["segments"])):
                start = result["segments"][i]["start"]
                end = result["segments"][i]["end"]
                text = result["segments"][i]["text"]
                
                df = df.append({"filename": self.liste[url].split("/")[-1],
                            "start": start, 
                            "end": end, 
                            "text": text}, ignore_index=True)
            
            # Add detected language to dataframe
            df["sprog"] = result["language"]
            
            
            liste_df.append(df)
        
        
        
        # Make excel output
        
        # Concatenate list of dfs
        dataframe = pd.concat(liste_df)
        
        
        # Create a Pandas Excel writer using XlsxWriter as the engine.
        writer = pd.ExcelWriter(self.liste[0].split(".")[0] + '_OUTPUT.xlsx', engine='xlsxwriter')
        writer_wrap_format = writer.book.add_format({"text_wrap": True, 'num_format': '@'})


        # Write the dataframe data to XlsxWriter. Turn off the default header and
        # index and skip one row to allow us to insert a user defined header.
        dataframe.to_excel(writer, sheet_name="Output", startrow=1, header=False, index=False)

        # Get the xlsxwriter workbook and worksheet objects.
        #workbook = writer.book
        worksheet = writer.sheets["Output"]

        # Get the dimensions of the dataframe.
        (max_row, max_col) = dataframe.shape

        # Create a list of column headers, to use in add_table().
        column_settings = [{'header': column} for column in dataframe.columns]

        # Add the Excel table structure. Pandas will add the data.
        worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': column_settings})

        # Make the columns wider for clarity.
        worksheet.set_column(0, max_col - 1, 12)
        
        in_col_no = xlsxwriter.utility.xl_col_to_name(dataframe.columns.get_loc("text"))
        
        worksheet.set_column(in_col_no + ":" + in_col_no, 30, writer_wrap_format)

        # Close the Pandas Excel writer and output the Excel file.
        writer.save()
        writer.close()
    
    
    ## Design setup
    
    def setupUi(self, Dialog):
        Dialog.setObjectName("Dialog")
        Dialog.resize(730, 400)
        
        self.select_files = QtWidgets.QPushButton(Dialog)
        self.select_files.setGeometry(QtCore.QRect(40, 62, 81, 31))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.select_files.setFont(font)
        self.select_files.setObjectName("select_files")
        
    
               
        
        self.combo_modelSize = QtWidgets.QComboBox(Dialog)
        self.combo_modelSize.setGeometry(QtCore.QRect(40, 131, 100, 21))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.combo_modelSize.setFont(font)
        self.combo_modelSize.setObjectName("combo_modelSize")
               
        
        self.runButton = QtWidgets.QPushButton(Dialog)
        self.runButton.setGeometry(QtCore.QRect(40, 289, 71, 21))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.runButton.setFont(font)
        self.runButton.setObjectName("runButton")
        
        
       

        self.retranslateUi(Dialog)
        QtCore.QMetaObject.connectSlotsByName(Dialog)
        
        
        
        modelSize_options = ['Chose model', 'tiny', 'base', 'small', 'medium', 'large']
        self.combo_modelSize.addItems(modelSize_options)
        
        # Do an action!
        self.select_files.clicked.connect(self.browsefiles)
        self.combo_modelSize.currentIndexChanged.connect(self.model_load)
        self.runButton.clicked.connect(self.run)
        
        
        
    

    def retranslateUi(self, Dialog):
        _translate = QtCore.QCoreApplication.translate
        Dialog.setWindowTitle(_translate("Dialog", "Dialog"))
        self.runButton.setText(_translate("Dialog", "Go!"))
        self.select_files.setText(_translate("Dialog", "Select"))


if __name__ == "__main__":
    import sys
    app = QtWidgets.QApplication(sys.argv)
    Dialog = QtWidgets.QDialog()
    ui = Ui_Dialog()
    ui.setupUi(Dialog)
    Dialog.show()
    sys.exit(app.exec_())


    


    I compile this app with pyinstaller using the following code. I had some issues to begin with so I found other with similar problems and ended up with this :

    


    pyinstaller --onedir --hidden-import=pytorch --collect-data torch --copy-metadata torch --copy-metadata tqdm --copy-metadata tokenizers --copy-metadata importlib_metadata --hidden-import="sklearn.utils._cython_blas" --hidden-import="sklearn.neighbors.typedefs" --hidden-import="sklearn.neighbors.quad_tree" --hidden-import="sklearn.tree" --hidden-import="sklearn.tree._utils" --copy-metadata regex --copy-metadata requests --copy-metadata packaging --copy-metadata filelock --copy-metadata numpy --add-data "./ffmpeg/*;./ffmpeg/" --hidden-import=whisper --copy-metadata whisper --collect-data whisper minimal_example_whisper.py

    


    When I take the outputtet dist directory and try to run the app on another Windows machine without FFMPEG installed (or Whisper or any other things), I get the following error from the terminal as I push the "run" button in the app (otherwise the app does run).

    


    C:\Users\Søren>"G:\minimal_example_whisper\minimal_example_whisper.exe"
whisper\transcribe.py:70: UserWarning: FP16 is not supported on CPU; using FP32 instead
Traceback (most recent call last):
  File "minimal_example_whisper.py", line 45, in run
  File "whisper\transcribe.py", line 76, in transcribe
  File "whisper\audio.py", line 111, in log_mel_spectrogram
  File "whisper\audio.py", line 42, in load_audio
  File "ffmpeg\_run.py", line 313, in run
  File "ffmpeg\_run.py", line 284, in run_async
  File "subprocess.py", line 951, in __init__
  File "subprocess.py", line 1420, in _execute_child
FileNotFoundError: [WinError 2] Den angivne fil blev ikke fundet


    


    I suspect this has something to do with FFMPEG not being installed on the other machines system ? Does anyone have an automatic solution for this when compiling the app or can it simply only run on machines that has FFMPEG installed ?

    


    Thanks in advance !

    


  • Convert Webm to MP4 on the fly using ffmpeg for a Telegram bot using Typescript

    23 novembre 2022, par Hex

    I'm trying to make a very primitive telegram bot that get's a json and uploads the urls that are in the json to telegram.

    


    The problem is that there are urls that point to webm files I tried to see if there is a simple way to do this and I found this : https://www.npmjs.com/package/webm-to-mp4
but it doesn't seem to work sadly, it runs into this error : "

    


    


    


    throw new Error(`Conversion error: ${stderr}`)
                                ^

Error: Conversion error: ffmpeg version n4.2.2 Copyright (c) 2000-2019 the FFmpeg developers
  built with emcc (Emscripten gcc/clang-like replacement) 1.39.11
  configuration: --cc=emcc --ranlib=emranlib --enable-cross-compile --target-os=none --arch=x86 --disable-runtime-cpudetect --disable-asm --disable-fast-unaligned --disable-pthreads --disable-w32threads --disable-os2threads --disable-debug --disable-stripping --disable-safe-bitstream-reader --disable-all --enable-ffmpeg --enable-avcodec --enable-avformat --enable-avfilter --enable-swresample --enable-swscale --disable-network --disable-d3d11va --disable-dxva2 --disable-vaapi --disable-vdpau --enable-decoder=vp8 --enable-decoder=h264 --enable-decoder=vorbis --enable-decoder=opus --enable-decoder=mp3 --enable-decoder=aac --enable-decoder=pcm_s16le --enable-decoder=mjpeg --enable-decoder=png --enable-demuxer=matroska --enable-demuxer=ogg --enable-demuxer=mov --enable-demuxer=mp3 --enable-demuxer=wav --enable-demuxer=image2 --enable-demuxer=concat --enable-protocol=file --enable-filter=aresample --enable-filter=scale --enable-filter=crop --enable-filter=overlay --enable-filter=hstack --enable-filter=vstack --disable-bzlib --disable-iconv --disable-libxcb --disable-lzma --disable-sdl2 --disable-securetransport --disable-xlib --enable-zlib --enable-encoder=libx264 --enable-encoder=libmp3lame --enable-encoder=aac --enable-muxer=mp4 --enable-muxer=mp3 --enable-muxer=null --enable-gpl --enable-libmp3lame --enable-libx264 --extra-cflags='-s USE_ZLIB=1 -I../lame/dist/include' --extra-ldflags=-L../lame/dist/lib
  libavutil      56. 31.100 / 56. 31.100
  libavcodec     58. 54.100 / 58. 54.100
  libavformat    58. 29.100 / 58. 29.100
  libavfilter     7. 57.100 /  7. 57.100
  libswscale      5.  5.100 /  5.  5.100
  libswresample   3.  5.100 /  3.  5.100
input.webm: Invalid data found when processing input
exception thrown: Error: Conversion error: ffmpeg version n4.2.2 Copyright (c) 2000-2019 the FFmpeg developers
  built with emcc (Emscripten gcc/clang-like replacement) 1.39.11
  configuration: --cc=emcc --ranlib=emranlib --enable-cross-compile --target-os=none --arch=x86 --disable-runtime-cpudetect --disable-asm --disable-fast-unaligned --disable-pthreads --disable-w32threads --disable-os2threads --disable-debug --disable-stripping --disable-safe-bitstream-reader --disable-all --enable-ffmpeg --enable-avcodec --enable-avformat --enable-avfilter --enable-swresample --enable-swscale --disable-network --disable-d3d11va --disable-dxva2 --disable-vaapi --disable-vdpau --enable-decoder=vp8 --enable-decoder=h264 --enable-decoder=vorbis --enable-decoder=opus --enable-decoder=mp3 --enable-decoder=aac --enable-decoder=pcm_s16le --enable-decoder=mjpeg --enable-decoder=png --enable-demuxer=matroska --enable-demuxer=ogg --enable-demuxer=mov --enable-demuxer=mp3 --enable-demuxer=wav --enable-demuxer=image2 --enable-demuxer=concat --enable-protocol=file --enable-filter=aresample --enable-filter=scale --enable-filter=crop --enable-filter=overlay --enable-filter=hstack --enable-filter=vstack --disable-bzlib --disable-iconv --disable-libxcb --disable-lzma --disable-sdl2 --disable-securetransport --disable-xlib --enable-zlib --enable-encoder=libx264 --enable-encoder=libmp3lame --enable-encoder=aac --enable-muxer=mp4 --enable-muxer=mp3 --enable-muxer=null --enable-gpl --enable-libmp3lame --enable-libx264 --extra-cflags='-s USE_ZLIB=1 -I../lame/dist/include' --extra-ldflags=-L../lame/dist/lib
  libavutil      56. 31.100 / 56. 31.100
  libavcodec     58. 54.100 / 58. 54.100
  libavformat    58. 29.100 / 58. 29.100
  libavfilter     7. 57.100 /  7. 57.100
  libswscale      5.  5.100 /  5.  5.100
  libswresample   3.  5.100 /  3.  5.100
input.webm: Invalid data found when processing input
,Error: Conversion error: ffmpeg version n4.2.2 Copyright (c) 2000-2019 the FFmpeg developers
  built with emcc (Emscripten gcc/clang-like replacement) 1.39.11
  configuration: --cc=emcc --ranlib=emranlib --enable-cross-compile --target-os=none --arch=x86 --disable-runtime-cpudetect --disable-asm --disable-fast-unaligned --disable-pthreads --disable-w32threads --disable-os2threads --disable-debug --disable-stripping --disable-safe-bitstream-reader --disable-all --enable-ffmpeg --enable-avcodec --enable-avformat --enable-avfilter --enable-swresample --enable-swscale --disable-network --disable-d3d11va --disable-dxva2 --disable-vaapi --disable-vdpau --enable-decoder=vp8 --enable-decoder=h264 --enable-decoder=vorbis --enable-decoder=opus --enable-decoder=mp3 --enable-decoder=aac --enable-decoder=pcm_s16le --enable-decoder=mjpeg --enable-decoder=png --enable-demuxer=matroska --enable-demuxer=ogg --enable-demuxer=mov --enable-demuxer=mp3 --enable-demuxer=wav --enable-demuxer=image2 --enable-demuxer=concat --enable-protocol=file --enable-filter=aresample --enable-filter=scale --enable-filter=crop --enable-filter=overlay --enable-filter=hstack --enable-filter=vstack --disable-bzlib --disable-iconv --disable-libxcb --disable-lzma --disable-sdl2 --disable-securetransport --disable-xlib --enable-zlib --enable-encoder=libx264 --enable-encoder=libmp3lame --enable-encoder=aac --enable-muxer=mp4 --enable-muxer=mp3 --enable-muxer=null --enable-gpl --enable-libmp3lame --enable-libx264 --extra-cflags='-s USE_ZLIB=1 -I../lame/dist/include' --extra-ldflags=-L../lame/dist/lib
  libavutil      56. 31.100 / 56. 31.100
  libavcodec     58. 54.100 / 58. 54.100
  libavformat    58. 29.100 / 58. 29.100
  libavfilter     7. 57.100 /  7. 57.100
  libswscale      5.  5.100 /  5.  5.100
  libswresample   3.  5.100 /  3.  5.100
input.webm: Invalid data found when processing input


    


    I'm not sure what is causing it, my guess is that the webm-to.mp4 package was updated 2 years ago and something broke in the meantime.

    


    Is there a better way to do this then downloading the webm converting it and then sending it up to telegram ? If not how could I do the conversion using just ffmpeg ?

    


    Here is my current code :

    


    import { Telegram, MediaSource, HTML } from 'puregram'
import { HearManager } from '@puregram/hear'
import { createReadStream } from 'fs'
import postsJson from './posts.json';
const { promises: fs } = require("fs");
const webmToMp4 = require("webm-to-mp4");

const telegram = new Telegram({
  token: '********:AAEzriis6zNNjEQuw0BxF9M2RPA9V4lEqLA'
})
const hearManager = new HearManager()

telegram.updates.startPolling()
  .then(() => console.log(`started polling @${telegram.bot.username}`))
  .catch(console.error)

telegram.updates.on('message', hearManager.middleware)

var posts = postsJson;

telegram.updates.on('message', (context) => {
    posts.forEach( async data => {
      console.error(data.ext);
        if(data.ext == "jpg" || data.ext == "png"){
          context.sendPhoto(MediaSource.url(data.image), { caption: data.content  } );
          delay(1000);
        }
        if(data.ext == "gif"){
          context.sendAnimation(MediaSource.url(data.image), { caption: data.content  } );
          delay(1000);
        }
        if(data.ext == "webm"){
          //context.sendDocument(MediaSource.url(data.image), { caption: data.content  } );
          delay(1000);
        }
        delay(1000);
    })
})
fs.writeFile("file.mp4", Buffer.from(webmToMp4( fs.readFile("./file.webm"))));

function delay(ms: number) {
  return new Promise( resolve => setTimeout(resolve, ms) ); //This does not work either
}


    


    I wish everoyne a nice day !