Recherche avancée

Médias (91)

Autres articles (99)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

Sur d’autres sites (12943)

  • Download m3u8 video from web page with authorization

    31 août 2024, par maya_soloveva

    I try download m3u8 video from webpage with access by authorization.

    


    I use ffmpeg command.
I get headers from network tab.

    


    ffmpeg -y -loglevel verbose -headers "$(cat headers.txt)" -i "https://apps.foxford.ru/webinar-foxford/storage/api/v2/backends/yandex/sets/hls.webinar.foxford.ru::420e27e1-1c7d-43e9-9195-fc8b99e6f50a/objects/long.v2.yandex.video.360p.master.m3u8" output2.mp4 -c copy -f mp4 file:foxford_01.mp4.part


    


    headers.txt content :

    


    Host: apps.foxford.ru
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:129.0) Gecko/20100101 Firefox/129.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br, zstd
Referer: https://apps.foxford.ru/webinar/?audience=foxford.ru&brand=foxford&embedded_origin=https%3A%2F%2Ffoxford.ru&external_id=5aefae2d-e810-49ef-8344-d3807535fd9e&lesson_id=250799&scope=Z2lkOi8vc3RvZWdlL1VsbXM6OlJvb21zOjpXZWJpbmFyLzUwNDcwMA&utm_referrer=https%3A%2F%2Ffoxford.ru%2Fcourses%2F9193%2Flessons%2F250799&backurl=https%253A%252F%252Fapps%252Efoxford%252Eru%252Fapi%252Fv1%252Fredirs%252Faudiences%252Ffoxford%252Eru%252Fapps%252Fwebinar
DNT: 1
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin
authorization: Bearer eyJhbGciOiJFUzI1NiJ9.eyJleHAiOjE3MjUwODU1MzUsImlzcyI6InN2Yy5mb3hmb3JkLnJ1IiwiYXVkIjoidXNyLmZveGZvcmQucnUiLCJzdWIiOiJaMmxrT2k4dmMzUnZaV2RsTDFWelpYSTZPbEIxY0dsc0x6RXdPRFU0TXpJeSJ9.NE9IsraTHFKicr3lkjzTTEkGLoGP-bL74nlX1umcPjC62h9MGXjPUFXL53jsnixd7b-WPtIc8N2WhsC6Ipt8IQ
Connection: keep-alive
Cookie: _csrf_token=%2Ba0goi1UnpRzFxpPOIbnZBaxtY0YUlZyBnyGohC5NbfBaVzLvwpEtM0x%2BjEPvJqJrcvsy2qMZHTStvusdxeUmQ%3D%3D; advcake_trackid=4b724357-eb38-b2f0-6919-4a4363aef58a; _tm_lt_sid=1720871531732.305536; client_timezone=Europe/Moscow; _ga=GA1.2.506102438.1720871532; tmr_lvid=7b674da8235ea642c3bfacf244eeae53; tmr_lvidTS=1720871533984; _ym_uid=1720871534834198811; _ym_d=1720871534; _tt_enable_cookie=1; _ttp=El4ZowXxQWdsnA31_DDrCt_AT_4; popmechanic_sbjs_migrations=popmechanic_1418474375998%3D1%7C%7C%7C1471519752600%3D1%7C%7C%7C1471519752605%3D1; _foxford_cookie_consent=yes; advcake_session_id=2fb2830e-9b68-2529-f9e4-2dec39973ef9; adtech_uid=ba6ca4c8-055a-4f46-b06c-6df09c20e8a4%3Afoxford.ru; top100_id=t1.7729862.2001929594.1723667001899; t3_sid_7729862=s1.1788907302.1725084603508.1725085234295.9.11; _ym_isad=2; mindboxDeviceUUID=9d785862-f8db-4ba8-b7bc-ccd9dbba98e1; directCrm-session=%7B%22deviceGuid%22%3A%229d785862-f8db-4ba8-b7bc-ccd9dbba98e1%22%7D; qrator_jsid=1725084559.622.G14rJEU37yUAYfzF-0l4eiu40m3uudgv95tu3faluhe7up6nv; mindboxSessionIsOpen=true
Priority: u=4
Pragma: no-cache
Cache-Control: no-cache
TE: trailers


    


    ffmpeg returns HTTP error Server returned 401 Unauthorized (authorization failed) :

    


    enter image description here

    


    Headers from network tab :
enter image description here

    


  • Parallelize Youtube video frame download using yt-dlp and cv2

    4 mars 2023, par zulle99

    My task is to download multiple sequences of successive low resolution frames of Youtube videos.

    


    I summarize the main parts of the process :

    


      

    • Each bag of shots have a dimension of half a second (depending on the current fps)
    • 


    • In order to grab useful frames I've decided to remove the initial and final 10% of each video since it is common to have an intro and outro. Moreover
    • 


    • I've made an array of pair of initial and final frame to distribute the load on multiple processes using ProcessPoolExecutor(max_workers=multiprocessing.cpu_count())
    • 


    • In case of failure/exception I completly remove the relative directory
    • 


    


    The point is that it do not scale up, since while running I noticesd that all CPUs had always a load lower that the 20% more or less. In addition since with these shots I have to run multiple CNNs, to prevent overfitting it is suggested to have a big dataset and not a bounch of shots.

    


    Here it is the code :

    


    import yt_dlp
import os
from tqdm import tqdm
import cv2
import shutil
import time
import random
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
import pandas as pd
import numpy as np
from pathlib import Path
import zipfile


# PARAMETERS
percentage_train_test = 50
percentage_bag_shots = 20
percentage_to_ignore = 10

zip_f_name = f'VideoClassificationDataset_{percentage_train_test}_{percentage_bag_shots}_{percentage_to_ignore}'
dataset_path = Path('/content/VideoClassificationDataset')

# DOWNOAD ZIP FILES
!wget --no-verbose https://github.com/gtoderici/sports-1m-dataset/archive/refs/heads/master.zip

# EXTRACT AND DELETE THEM
!unzip -qq -o '/content/master.zip' 
!rm '/content/master.zip'

DATA = {'train_partition.txt': {},
        'test_partition.txt': {}}

LABELS = []

train_dict = {}
test_dict = {}

path = '/content/sports-1m-dataset-master/original'

for f in os.listdir(path):
  with open(path + '/' + f) as f_txt:
    lines = f_txt.readlines()
    for line in lines:
      splitted_line = line.split(' ')
      label_indices = splitted_line[1].rstrip('\n').split(',') 
      DATA[f][splitted_line[0]] = list(map(int, label_indices))

with open('/content/sports-1m-dataset-master/labels.txt') as f_labels:
  LABELS = f_labels.read().splitlines()


TRAIN = DATA['train_partition.txt']
TEST = DATA['test_partition.txt']
print('Original Train Test length: ', len(TRAIN), len(TEST))

# sample a subset percentage_train_test
TRAIN = dict(random.sample(TRAIN.items(), (len(TRAIN)*percentage_train_test)//100))
TEST = dict(random.sample(TEST.items(), (len(TEST)*percentage_train_test)//100))

print(f'Sampled {percentage_train_test} Percentage  Train Test length: ', len(TRAIN), len(TEST))


if not os.path.exists(dataset_path): os.makedirs(dataset_path)
if not os.path.exists(f'{dataset_path}/train'): os.makedirs(f'{dataset_path}/train')
if not os.path.exists(f'{dataset_path}/test'): os.makedirs(f'{dataset_path}/test')


    


    Function to extract a sequence of continuous frames :

    


    def extract_frames(directory, url, idx_bag, start_frame, end_frame):
  capture = cv2.VideoCapture(url)
  count = start_frame

  capture.set(cv2.CAP_PROP_POS_FRAMES, count)
  os.makedirs(f'{directory}/bag_of_shots{str(idx_bag)}')

  while count < end_frame:

    ret, frame = capture.read()

    if not ret: 
      shutil.rmtree(f'{directory}/bag_of_shots{str(idx_bag)}')
      return False

    filename = f'{directory}/bag_of_shots{str(idx_bag)}/shot{str(count - start_frame)}.png'

    cv2.imwrite(filename, frame)
    count += 1

  capture.release()
  return True


    


    Function to spread the load along multiple processors :

    


    def video_to_frames(video_url, labels_list, directory, dic, percentage_of_bags):
  url_id = video_url.split('=')[1]
  path_until_url_id = f'{dataset_path}/{directory}/{url_id}'
  try:   

    ydl_opts = {
        'ignoreerrors': True,
        'quiet': True,
        'nowarnings': True,
        'simulate': True,
        'ignorenoformatserror': True,
        'verbose':False,
        'cookies': '/content/all_cookies.txt',
        #https://stackoverflow.com/questions/63329412/how-can-i-solve-this-youtube-dl-429
    }
    ydl = yt_dlp.YoutubeDL(ydl_opts)
    info_dict = ydl.extract_info(video_url, download=False)

    if(info_dict is not None and  info_dict['fps'] >= 20):
      # I must have a least 20 frames per seconds since I take half of second bag of shots for every video

      formats = info_dict.get('formats', None)

      # excluding the initial and final 10% of each video to avoid noise
      video_length = info_dict['duration'] * info_dict['fps']

      shots = info_dict['fps'] // 2

      to_ignore = (video_length * percentage_to_ignore) // 100
      new_len = video_length - (to_ignore * 2)
      tot_stored_bags = ((new_len // shots) * percentage_of_bags) // 100   # ((total_possbile_bags // shots) * percentage_of_bags) // 100
      if tot_stored_bags == 0: tot_stored_bags = 1 # minimum 1 bag of shots

      skip_rate_between_bags = (new_len - (tot_stored_bags * shots)) // (tot_stored_bags-1) if tot_stored_bags > 1 else 0

      chunks = [[to_ignore+(bag*(skip_rate_between_bags+shots)), to_ignore+(bag*(skip_rate_between_bags+shots))+shots] for bag in range(tot_stored_bags)]
      # sequence of [[start_frame, end_frame], [start_frame, end_frame], [start_frame, end_frame], ...]


      # ----------- For the moment I download only shots form video that has 144p resolution -----------

      res = {
          '160': '144p',
          '133': '240p',
          '134': '360p',
          '135': '360p',
          '136': '720p'
      }

      format_id = {}
      for f in formats: format_id[f['format_id']] = f
      #for res in resolution_id:
      if list(res.keys())[0] in list(format_id.keys()):
          video = format_id[list(res.keys())[0]]
          url = video.get('url', None)
          if(video.get('url', None) != video.get('manifest_url', None)):

            if not os.path.exists(path_until_url_id): os.makedirs(path_until_url_id)

            with ProcessPoolExecutor(max_workers=multiprocessing.cpu_count()) as executor:
              for idx_bag, f in enumerate(chunks): 
                res = executor.submit(
                  extract_frames, directory = path_until_url_id, url = url, idx_bag = idx_bag, start_frame = f[0], end_frame = f[1])
                
                if res.result() is True: 
                  l = np.zeros(len(LABELS), dtype=int) 
                  for label in labels_list: l[label] = 1
                  l = np.append(l, [shots]) # appending the number of shots taken in the list before adding it on the dictionary

                  dic[f'{directory}/{url_id}/bag_of_shots{str(idx_bag)}'] = l.tolist()


  except Exception as e:
    shutil.rmtree(path_until_url_id)
    pass


    


    Download of TRAIN bag of shots :

    


    start_time = time.time()
pbar = tqdm(enumerate(TRAIN.items()), total = len(TRAIN.items()), leave=False)

for _, (url, labels_list) in pbar: video_to_frames(
  video_url = url, labels_list = labels_list, directory = 'train', dic = train_dict, percentage_of_bags = percentage_bag_shots)

print("--- %s seconds ---" % (time.time() - start_time))


    


    Download of TEST bag of shots :

    


    start_time = time.time()
pbar = tqdm(enumerate(TEST.items()), total = len(TEST.items()), leave=False)

for _, (url, labels_list) in pbar: video_to_frames(
  video_url = url, labels_list = labels_list, directory = 'test', dic = test_dict, percentage_of_bags = percentage_bag_shots)

print("--- %s seconds ---" % (time.time() - start_time))


    


    Save the .csv files

    


    train_df = pd.DataFrame.from_dict(train_dict, orient='index', dtype=int).reset_index(level=0)
train_df = train_df.rename(columns={train_df.columns[-1]: 'shots'})
train_df.to_csv('/content/VideoClassificationDataset/train.csv', index=True)

test_df = pd.DataFrame.from_dict(test_dict, orient='index', dtype=int).reset_index(level=0)
test_df = test_df.rename(columns={test_df.columns[-1]: 'shots'})
test_df.to_csv('/content/VideoClassificationDataset/test.csv', index=True)


    


  • How do I combine PyTube audio and video streams in a Flask app and let the user download as one file without storing on the web server ?

    10 avril 2022, par AJB9384

    I'm building a YouTube downloader as a side project in Flask. It allows users to input a url and download the video without storing anything on the server I'm hosting on

    


    Lower quality videos can be sent to the user easily as they from PyTube as one file. I use the code below :

    


    import os
import flask
from flask import redirect, url_for, session, send_file
import requests

import pytube
from pytube import YouTube
from io import BytesIO

@app.route('/pull_videos', methods = ['GET', 'POST'])
def pull_videos(): 
  buffer=BytesIO()
  yt_test=YouTube('https://www.youtube.com/watch?v=NNNPgIfK2YE')
  video = yt_test.streams.get_by_itag(251)

  video.stream_to_buffer(buffer)
  buffer.seek(0)

  return send_file(buffer, as_attachment=True, download_name="Test video")


    


    However, I struggle when trying to pull in higher quality videos as they come in as separate audio and videos streams (see documentation here : https://pytube.io/en/latest/user/streams.html#)

    


    I am trying to use ffmpeg to combine the two and then send to the user, but the code below isn't working as expected and throws an error :

    


    Code :

    


    import os
import flask
from flask import redirect, url_for, session, send_file
import requests
import ffmpeg

import pytube
from pytube import YouTube
from io import BytesIO

@app.route('/pull_videos', methods = ['GET', 'POST'])
def pull_videos(): 
  buffer=BytesIO()
  
  video = yt_test.streams.get_by_itag(137)
  input_video = ffmpeg.input(video)
  
  audio = yt_test.streams.get_by_itag(137)
  input_audio = ffmpeg.input(audio)
  
  combined = ffmpeg.concat(input_video, input_audio, v=1, a=1)
  combined.stream_to_buffer(buffer)
  buffer.seek(0)

  return send_file(buffer, as_attachment=True, download_name="Test video")


    


    Error : AttributeError : 'FilterableStream' object has no attribute 'stream_to_buffer'

    


    How could I combine these audio and video streams from PyTube into one file for the user to download without storing on the server ?