Recherche avancée

Médias (91)

Autres articles (72)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Gestion de la ferme

    2 mars 2010, par

    La ferme est gérée dans son ensemble par des "super admins".
    Certains réglages peuvent être fais afin de réguler les besoins des différents canaux.
    Dans un premier temps il utilise le plugin "Gestion de mutualisation"

  • La gestion des forums

    3 novembre 2011, par

    Si les forums sont activés sur le site, les administrateurs ont la possibilité de les gérer depuis l’interface d’administration ou depuis l’article même dans le bloc de modification de l’article qui se trouve dans la navigation de la page.
    Accès à l’interface de modération des messages
    Lorsqu’il est identifié sur le site, l’administrateur peut procéder de deux manières pour gérer les forums.
    S’il souhaite modifier (modérer, déclarer comme SPAM un message) les forums d’un article particulier, il a à sa (...)

Sur d’autres sites (6103)

  • Why doesn't the ffmpeg output display the stream in the browser ? [closed]

    10 mai 2024, par Tebyy

    Why is it that when I create a livestream in Python using ffmpeg, and then I open the browser and visit the page, the page keeps loading continuously, and in PyCharm logs, I see binary data ? There are no errors displayed, and the code seems correct to me. I even tried saving to a file for testing purposes, and when I play the video, everything works fine. Does anyone know what might be wrong here ?

    


    Code :

    


    def generate_frames():
    cap = cv2.VideoCapture(os.path.normpath(app_root_dir().joinpath("data/temp", "video-979257305707693982.mp4")))
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        yield frame


@app.route('/video_feed')
def video_feed():
    ffmpeg_command = [
        'ffmpeg', '-f', 'rawvideo', '-pix_fmt', 'bgr24',
        '-s:v', '1920x1080', '-r', '60',
        '-i', '-', '-vf', 'setpts=2.5*PTS', # Video Speed
        '-c:v', 'libvpx-vp9', '-g', '60', '-keyint_min', '60',
        '-b:v', '6M', '-minrate', '4M', '-maxrate', '12M', '-bufsize', '8M',
        '-crf', '0', '-deadline', 'realtime', '-tune', 'psnr', '-quality', 'good',
        '-tile-columns', '6', '-threads', '8', '-lag-in-frames', '16',
        '-f', 'webm', '-'
    ]
    ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=-1)
    frames_generator = generate_frames()
    for frame in frames_generator:
        ffmpeg_process.stdin.write(frame)
        ffmpeg_process.stdin.flush()

    ffmpeg_process.stdin.close()
    ffmpeg_process.wait()

    def generate_video_stream(process):
        startTime = time.time()
        buffer = []
        sentBurst = False
        for chunk in iter(lambda: process.stderr.read(4096), b''):
            buffer.append(chunk)

            # Minimum buffer time, 3 seconds
            if sentBurst is False and time.time() > startTime + 3 and len(buffer) > 0:
                sentBurst = True
                for i in range(0, len(buffer) - 2):
                    print("Send initial burst #", i)
                    yield buffer.pop(0)

            elif time.time() > startTime + 3 and len(buffer) > 0:
                yield buffer.pop(0)

            process.poll()
            if isinstance(process.returncode, int):
                if process.returncode > 0:
                    print('FFmpeg Error', process.returncode)

                break

    return Response(stream_with_context(generate_video_stream(ffmpeg_process)), mimetype='video/webm', content_type="video/webm; codecs=vp9", headers=Headers([("Connection", "close")]))



    


  • FFMPEG multi livestream - recorded stream send to different services like YT and Twitch at different time (on different button clicks )

    4 octobre 2022, par Ganesh

    Trying for the last 10 days and still no success, I am creating a python application that will accept the URL and visit that URL using chromium, capture that screen and send that real-time screen recording to different live stream acceptors as youtube live, twitch Twitter, Facebook live or some other sources and many of these could be multiple.

    


    There are two challenges (both challenges depend on a user action like different button clicks) -

    


      

    • The time of starting the Livestream we know only one Livestream acceptor and other acceptors could be sent via another API at any time or may not be sent on the whole live stream.
    • 


    • Any of the streams could be stopped at any moment including the first one which started the original live streaming service
    • 


    


    To Solve these challenges I am trying the following process (i took mp4 as a source for simplifying)

    


      

    • create a stream and store it into PIPE.stdout
    • 


    


    ffmpeg_Command_get_stream = 'ffmpeg -re -i test.mp4 -f flv pipe:1'
ffmpeg_Command_get_stream=ffmpeg_Command_get_stream.split()
pipe = sp.Popen(ffmpeg_Command_get_stream,
            stdout=sp.PIPE,
            stderr=sp.PIPE,
            bufsize=8000000,
            shell=True,
            universal_newlines=True
            )
out,err = pipe.communicate()


    


      

    • and send that stream with the help of FFMPEG to the Livestream acceptor with the click of the youtube Livestream button

      


      ffmpeg_Command_send_stream = ['ffmpeg','-i',pipe.stdout,'-f','flv',RTMPURL_YOUTUBE]

      


    • 


    


    Update Trying to Explain it a little more :

    


    step 1 - I need a real-time stream from the first command, so I used -re in FFMPEG

    


    step 2 - Use above stream as an input for other command and send that as an output as a Livestream to youtube (or twitch/Facebook), But the second step would happen only when the user click on the button "YT LiveStream", Here the tricky thing is there are multiple buttons (YT LiveStream, Twitch LiveStream, Facebook LiveStream) and user can click any time on any of button, also can click on all button one by one.

    


    enter image description here

    


    sorry for bad explaination

    


    what I am doing wrong ? , Is this Possible ? or need to go with another process,

    


    any help would be greatly appreciated

    


  • WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8

    5 septembre 2019, par Tavo Diaz

    I am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
    invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".

    After the code is executed, I see into the folder and I don’t see any videos (just the meta info).

    Some more info (if it helps) :
    I have a 1 CPU (4g), SSD Ubuntu 16.04 LTS

    I have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.

    This is the code

    import os
    import numpy as np
    import gym
    from gym import wrappers
    import pybullet_envs


    class Hp():
       def __init__(self):
           self.nb_steps = 1000
           self.episode_lenght =   1000
           self.learning_rate = 0.02
           self.nb_directions = 32
           self.nb_best_directions = 32
           assert self.nb_best_directions <= self.nb_directions
           self.noise = 0.03
           self.seed = 1
           self.env_name = 'HalfCheetahBulletEnv-v0'


    class Normalizer():
       def __init__(self, nb_inputs):
           self.n = np.zeros(nb_inputs)
           self.mean = np.zeros(nb_inputs)
           self.mean_diff = np.zeros(nb_inputs)
           self.var = np.zeros(nb_inputs)

       def observe(self, x):
           self.n += 1.
           last_mean = self.mean.copy()
           self.mean += (x - self.mean) / self.n
           #abajo es el online numerator update
           self.mean_diff += (x - last_mean) * (x - self.mean)
           #abajo online computation de la varianza
           self.var = (self.mean_diff / self.n).clip(min = 1e-2)  

       def normalize(self, inputs):
           obs_mean = self.mean
           obs_std = np.sqrt(self.var)
           return (inputs - obs_mean) / obs_std

    class Policy():
       def __init__(self, input_size, output_size):
           self.theta = np.zeros((output_size, input_size))

       def evaluate(self, input, delta = None, direction = None):
           if direction is None:
               return self.theta.dot(input)
           elif direction == 'positive':
               return (self.theta + hp.noise * delta).dot(input)
           else:
               return (self.theta - hp.noise * delta).dot(input)

       def sample_deltas(self):
           return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]

       def update (self, rollouts, sigma_r):
           step = np.zeros(self.theta.shape)
           for r_pos, r_neg, d in rollouts:
               step += (r_pos - r_neg) * d
           self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step


    def explore(env, normalizer, policy, direction = None, delta = None):
       state = env.reset()
       done = False
       num_plays = 0.
       #abajo puede ser promedio de las rewards
       sum_rewards = 0
       while not done and num_plays < hp.episode_lenght:
           normalizer.observe(state)
           state = normalizer.normalize(state)
           action = policy.evaluate(state, delta, direction)
           state, reward, done, _ = env.step(action)
           reward = max(min(reward, 1), -1)
           #abajo sería poner un promedio
           sum_rewards += reward
           num_plays += 1
       return sum_rewards

    def train (env, policy, normalizer, hp):
       for step in range(hp.nb_steps):
           #iniciar las perturbaciones deltas y los rewards positivos/negativos
           deltas = policy.sample_deltas()
           positive_rewards = [0] * hp.nb_directions
           negative_rewards = [0] * hp.nb_directions
           #sacar las rewards en la dirección positiva
           for k in range(hp.nb_directions):
               positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
           #sacar las rewards en dirección negativo
           for k in range(hp.nb_directions):
               negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
           #sacar todas las rewards para sacar la desvest
           all_rewards = np.array(positive_rewards + negative_rewards)
           sigma_r = all_rewards.std()
           #acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
           scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
           order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
           rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
           #actualizar policy
           policy.update (rollouts, sigma_r)
           #poner el final reward del policy luego del update
           reward_evaluation = explore (env, normalizer, policy)
           print('Paso: ', step, 'Lejania: ', reward_evaluation)

    def mkdir(base, name):
       path = os.path.join(base, name)
       if not os.path.exists(path):
           os.makedirs(path)
       return path
    work_dir = mkdir('exp', 'brs')
    monitor_dir = mkdir(work_dir, 'monitor')

    hp = Hp()
    np.random.seed(hp.seed)
    env = gym.make(hp.env_name)
    env = wrappers.Monitor(env, monitor_dir, force = True)
    nb_inputs = env.observation_space.shape[0]
    nb_outputs = env.action_space.shape[0]
    policy = Policy(nb_inputs, nb_outputs)
    normalizer = Normalizer(nb_inputs)
    train(env, policy, normalizer, hp)