Recherche avancée

Médias (2)

Mot : - Tags -/plugins

Autres articles (30)

  • Qualité du média après traitement

    21 juin 2013, par

    Le bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
    Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (4216)

  • FATE Under New Management

    2 août 2010, par Multimedia Mike — FATE Server

    At any given time, I have between 20-30 blog posts in some phase of development. Half of them seem to be contemplations regarding the design and future of my original FATE system and are thus ready for the recycle bin at this point. Mans is a man of considerably fewer words, so I thought I would use a few words to describe the new FATE system that he put together.

    Overview
    Here are the distinguishing features that Mans mentioned in his announcement message :

    • Test specs are part of the ffmpeg repo. They are thus properly versioned, and any developer can update them as needed.
    • Support for inexact tests.
    • Parallel testing on multi-core systems.
    • Anyone registered with FATE can add systems.
    • Client side entirely in POSIX shell script and GNU make.
    • Open source backend and web interface.
    • Client and backend entirely decoupled.
    • Anyone can contribute patches.

    Client
    The FATE build/test client source code is contained in tests/fate.sh in the FFmpeg source tree. The script — as the extension implies — is a shell script. It takes a text file full of shell variables, updates source code, configures, builds, and tests. It’s a considerably minor amount of code, especially compared to my original Python code. Part of this is because most of the testing logic has shifted into FFmpeg itself. The build system knows about all the FATE tests and all of the specs are now maintained in the codebase (thanks to all who spearheaded that effort— I think it was Vitor and Mans).

    The client creates a report file which contains a series of lines to be transported to the server. The first line has some information about the configuration and compiler, plus the overall status of the build/test iteration. The second line contains ’./configure’ information. Each of the remaining lines contain information about an individual FATE test, mostly in Base64 format.

    Server
    The server source code lives at http://git.mansr.com/?p=fateweb. It is written in Perl and plugs into a CGI-capable HTTP server. Authentication between the client and the server operates via SSH/SSL. In stark contrast to the original FATE server, there is no database component on the backend. The new system maintains information in a series of flat files.

  • avcodec/dvenc : Change quantizer dead zone default to 7

    6 août 2017, par Michael Niedermayer
    avcodec/dvenc : Change quantizer dead zone default to 7
    

    This improves the quality and reduces the "blocking" in flat areas

    Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>

    • [DH] libavcodec/dvenc.c
    • [DH] tests/ref/lavf/dv_fmt
    • [DH] tests/ref/vsynth/vsynth1-dv
    • [DH] tests/ref/vsynth/vsynth1-dv-411
    • [DH] tests/ref/vsynth/vsynth1-dv-50
    • [DH] tests/ref/vsynth/vsynth2-dv
    • [DH] tests/ref/vsynth/vsynth2-dv-411
    • [DH] tests/ref/vsynth/vsynth2-dv-50
    • [DH] tests/ref/vsynth/vsynth_lena-dv
    • [DH] tests/ref/vsynth/vsynth_lena-dv-411
    • [DH] tests/ref/vsynth/vsynth_lena-dv-50
  • FFmpeg - MJPEG decoding gives inconsistent values

    28 décembre 2016, par ahmadh

    I have a set of JPEG frames which I am muxing into an avi, which gives me a mjpeg video. This is the command I run on the console :

    ffmpeg -y -start_number 0 -i %06d.JPEG -codec copy vid.avi

    When I try to demux the video using ffmpeg C api, I get frames which are slightly different in values. Demuxing code looks something like this :

    AVFormatContext* fmt_ctx = NULL;
    AVCodecContext* cdc_ctx = NULL;
    AVCodec* vid_cdc = NULL;
    int ret;
    unsigned int height, width;

    ....
    // read_nframes is the number of frames to read
    output_arr = new unsigned char [height * width * 3 *
                                   sizeof(unsigned char) * read_nframes];

    avcodec_open2(cdc_ctx, vid_cdc, NULL);

    int num_bytes;
    uint8_t* buffer = NULL;
    const AVPixelFormat out_format = AV_PIX_FMT_RGB24;

    num_bytes = av_image_get_buffer_size(out_format, width, height, 1);
    buffer = (uint8_t*)av_malloc(num_bytes * sizeof(uint8_t));

    AVFrame* vid_frame = NULL;
    vid_frame = av_frame_alloc();
    AVFrame* conv_frame = NULL;
    conv_frame = av_frame_alloc();

    av_image_fill_arrays(conv_frame->data, conv_frame->linesize, buffer,
                        out_format, width, height, 1);

    struct SwsContext *sws_ctx = NULL;
    sws_ctx = sws_getContext(width, height, cdc_ctx->pix_fmt,
                            width, height, out_format,
                            SWS_BILINEAR, NULL,NULL,NULL);

    int frame_num = 0;
    AVPacket vid_pckt;
    while (av_read_frame(fmt_ctx, &amp;vid_pckt) >=0) {
       ret = avcodec_send_packet(cdc_ctx, &amp;vid_pckt);
       if (ret &lt; 0)
           break;

       ret = avcodec_receive_frame(cdc_ctx, vid_frame);
       if (ret &lt; 0 &amp;&amp; ret != AVERROR(EAGAIN) &amp;&amp; ret != AVERROR_EOF)
           break;
       if (ret >= 0) {
           // convert image from native format to planar GBR
           sws_scale(sws_ctx, vid_frame->data,
                     vid_frame->linesize, 0, vid_frame->height,
                     conv_frame->data, conv_frame->linesize);

           unsigned char* r_ptr = output_arr +
               (height * width * sizeof(unsigned char) * 3 * frame_num);
           unsigned char* g_ptr = r_ptr + (height * width * sizeof(unsigned char));
           unsigned char* b_ptr = g_ptr + (height * width * sizeof(unsigned char));
           unsigned int pxl_i = 0;

           for (unsigned int r = 0; r &lt; height; ++r) {
               uint8_t* avframe_r = conv_frame->data[0] + r*conv_frame->linesize[0];
               for (unsigned int c = 0; c &lt; width; ++c) {
                   r_ptr[pxl_i] = avframe_r[0];
                   g_ptr[pxl_i]   = avframe_r[1];
                   b_ptr[pxl_i]   = avframe_r[2];
                   avframe_r += 3;
                   ++pxl_i;
               }
           }

           ++frame_num;

           if (frame_num >= read_nframes)
               break;
       }
    }

    ...

    In my experience around two-thirds of the pixel values are different, each by +-1 (in a range of [0,255]). I am wondering is it due to some decoding scheme FFmpeg uses for reading JPEG frames ? I tried encoding and decoding png frames, and it works perfectly fine. I am sure this is something to do with the libav decoding process because the MD5 values are consistent between the images and the video :

    ffmpeg -i %06d.JPEG -f framemd5 -
    ffmpeg -i vid.avi -f framemd5 -

    In short my goal is to get the same pixel by pixel values for each JPEG frame as I would I have gotten if I was reading the JPEG images directly. Here is the stand-alone bitbucket code I used. It includes cmake files to build code, and a couple of jpeg frames with the converted avi file to test this problem. (give ’—filetype png’ to test the png decoding).