Recherche avancée

Médias (91)

Autres articles (78)

  • D’autres logiciels intéressants

    12 avril 2011, par

    On ne revendique pas d’être les seuls à faire ce que l’on fait ... et on ne revendique surtout pas d’être les meilleurs non plus ... Ce que l’on fait, on essaie juste de le faire bien, et de mieux en mieux...
    La liste suivante correspond à des logiciels qui tendent peu ou prou à faire comme MediaSPIP ou que MediaSPIP tente peu ou prou à faire pareil, peu importe ...
    On ne les connais pas, on ne les a pas essayé, mais vous pouvez peut être y jeter un coup d’oeil.
    Videopress
    Site Internet : (...)

  • MediaSPIP Player : problèmes potentiels

    22 février 2011, par

    Le lecteur ne fonctionne pas sur Internet Explorer
    Sur Internet Explorer (8 et 7 au moins), le plugin utilise le lecteur Flash flowplayer pour lire vidéos et son. Si le lecteur ne semble pas fonctionner, cela peut venir de la configuration du mod_deflate d’Apache.
    Si dans la configuration de ce module Apache vous avez une ligne qui ressemble à la suivante, essayez de la supprimer ou de la commenter pour voir si le lecteur fonctionne correctement : /** * GeSHi (C) 2004 - 2007 Nigel McNie, (...)

  • L’agrémenter visuellement

    10 avril 2011

    MediaSPIP est basé sur un système de thèmes et de squelettes. Les squelettes définissent le placement des informations dans la page, définissant un usage spécifique de la plateforme, et les thèmes l’habillage graphique général.
    Chacun peut proposer un nouveau thème graphique ou un squelette et le mettre à disposition de la communauté.

Sur d’autres sites (5046)

  • How to compress video applying even blur effect

    17 octobre 2016, par Kukuster

    How to compress video applying well-looking apportioned blur effect, like in JPG image ?

    I tried some ffmpeg postprocesing libraries, they are fspp, spp, uspp (takes really long time to render), etc. I almost reached the goal using fspp with parameters 5:60:15 . But blur was stronger than needed, and it’s leave bad artifacts when i try to use less compression. Also uspp is does beautiful and compresses enough, but it’s leave about 50% of video unblured. I also haven’t much time to try all uspp features. Is there resolution special for this purpose ?

    The point is to implement video compression with the only side effect of compression approaches jpeg-compression-like blur or blur-mask-like. Also it would be very good if there is a simple option to choose between :
    1) more compress, less pretty blur / more strong blur ; and 2) less compress, prettier blur / less strong blur.

    I am used to use ffmpeg and i’m running linux, so it would be so nice if there is a way to solve this with ffmpeg.
    Here is my ffmpeg input data about the video streams :

      Duration : 00:01:03.02, start : 0.000000, bitrate : 4010 kb/s
        Stream #0:0(und) : Video : h264 (High) (avc1 / 0x31637661), yuv420p, 1280x720 [SAR 1:1 DAR 16:9], 3870 kb/s, 23.98 fps, 23.98 tbr, 24k tbn, 47.95 tbc (default)
        Metadata :
          handler_name : VideoHandler
        Stream #0:1(eng) : Audio : aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 133 kb/s (default)
        Metadata :
          handler_name : SoundHandler
    

    Edit : attaching jpeg pictured as example of desired output :
    not blured
    blured

  • Beware the builtins

    14 janvier 2010, par Mans — Compilers

    GCC includes a large number of builtin functions allegedly providing optimised code for common operations not easily expressed directly in C. Rather than taking such claims at face value (this is GCC after all), I decided to conduct a small investigation to see how well a few of these functions are actually implemented for various targets.

    For my test, I selected the following functions :

    • __builtin_bswap32 : Byte-swap a 32-bit word.
    • __builtin_bswap64 : Byte-swap a 64-bit word.
    • __builtin_clz : Count leading zeros in a word.
    • __builtin_ctz : Count trailing zeros in a word.
    • __builtin_prefetch : Prefetch data into cache.

    To test the quality of these builtins, I wrapped each in a normal function, then compiled the code for these targets :

    • ARMv7
    • AVR32
    • MIPS
    • MIPS64
    • PowerPC
    • PowerPC64
    • x86
    • x86_64

    In all cases I used compiler flags were -O3 -fomit-frame-pointer plus any flags required to select a modern CPU model.

    ARM

    Both __builtin_clz and __builtin_prefetch generate the expected CLZ and PLD instructions respectively. The code for __builtin_ctz is reasonable for ARMv6 and earlier :

    rsb     r3, r0, #0
    and     r0, r3, r0
    clz     r0, r0
    rsb     r0, r0, #31
    

    For ARMv7 (in fact v6T2), however, using the new bit-reversal instruction would have been better :

    rbit    r0, r0
    clz     r0, r0
    

    I suspect this is simply a matter of the function not yet having been updated for ARMv7, which is perhaps even excusable given the relatively rare use cases for it.

    The byte-reversal functions are where it gets shocking. Rather than use the REV instruction found from ARMv6 on, both of them generate external calls to __bswapsi2 and __bswapdi2 in libgcc, which is plain C code :

    SItype
    __bswapsi2 (SItype u)
    
      return ((((u) & 0xff000000) >> 24)
              | (((u) & 0x00ff0000) >>  8)
              | (((u) & 0x0000ff00) <<  8)
              | (((u) & 0x000000ff) << 24)) ;
    
    

    DItype
    __bswapdi2 (DItype u)

    return ((((u) & 0xff00000000000000ull) >> 56)
    | (((u) & 0x00ff000000000000ull) >> 40)
    | (((u) & 0x0000ff0000000000ull) >> 24)
    | (((u) & 0x000000ff00000000ull) >> 8)
    | (((u) & 0x00000000ff000000ull) << 8)
    | (((u) & 0x0000000000ff0000ull) << 24)
    | (((u) & 0x000000000000ff00ull) << 40)
    | (((u) & 0x00000000000000ffull) << 56)) ;

    While the 32-bit version compiles to a reasonable-looking shift/mask/or job, the 64-bit one is a real WTF. Brace yourselves :

    push    r4, r5, r6, r7, r8, r9, sl, fp
    mov     r5, #0
    mov     r6, #65280 ; 0xff00
    sub     sp, sp, #40 ; 0x28
    and     r7, r0, r5
    and     r8, r1, r6
    str     r7, [sp, #8]
    str     r8, [sp, #12]
    mov     r9, #0
    mov     r4, r1
    and     r5, r0, r9
    mov     sl, #255 ; 0xff
    ldr     r9, [sp, #8]
    and     r6, r4, sl
    mov     ip, #16711680 ; 0xff0000
    str     r5, [sp, #16]
    str     r6, [sp, #20]
    lsl     r2, r0, #24
    and     ip, ip, r1
    lsr     r7, r4, #24
    mov     r1, #0
    lsr     r5, r9, #24
    mov     sl, #0
    mov     r9, #-16777216 ; 0xff000000
    and     fp, r0, r9
    lsr     r6, ip, #8
    orr     r9, r7, r1
    and     ip, r4, sl
    orr     sl, r1, r2
    str     r6, [sp]
    str     r9, [sp, #32]
    str     sl, [sp, #36] ; 0x24
    add     r8, sp, #32
    ldm     r8, r7, r8
    str     r1, [sp, #4]
    ldm     sp, r9, sl
    orr     r7, r7, r9
    orr     r8, r8, sl
    str     r7, [sp, #32]
    str     r8, [sp, #36] ; 0x24
    mov     r3, r0
    mov     r7, #16711680 ; 0xff0000
    mov     r8, #0
    and     r9, r3, r7
    and     sl, r4, r8
    ldr     r0, [sp, #16]
    str     fp, [sp, #24]
    str     ip, [sp, #28]
    stm     sp, r9, sl
    ldr     r7, [sp, #20]
    ldr     sl, [sp, #12]
    ldr     fp, [sp, #12]
    ldr     r8, [sp, #28]
    lsr     r0, r0, #8
    orr     r7, r0, r7, lsl #24
    lsr     r6, sl, #24
    orr     r5, r5, fp, lsl #8
    lsl     sl, r8, #8
    mov     fp, r7
    add     r8, sp, #32
    ldm     r8, r7, r8
    orr     r6, r6, r8
    ldr     r8, [sp, #20]
    ldr     r0, [sp, #24]
    orr     r5, r5, r7
    lsr     r8, r8, #8
    orr     sl, sl, r0, lsr #24
    mov     ip, r8
    ldr     r0, [sp, #4]
    orr     fp, fp, r5
    ldr     r5, [sp, #24]
    orr     ip, ip, r6
    ldr     r6, [sp]
    lsl     r9, r5, #8
    lsl     r8, r0, #24
    orr     fp, fp, r9
    lsl     r3, r3, #8
    orr     r8, r8, r6, lsr #8
    orr     ip, ip, sl
    lsl     r7, r6, #24
    and     r5, r3, #16711680 ; 0xff0000
    orr     r7, r7, fp
    orr     r8, r8, ip
    orr     r4, r1, r7
    orr     r5, r5, r8
    mov     r9, r6
    mov     r1, r5
    mov     r0, r4
    add     sp, sp, #40 ; 0x28
    pop     r4, r5, r6, r7, r8, r9, sl, fp
    bx      lr
    

    That’s right, 91 instructions to move 8 bytes around a bit. GCC definitely has a problem with 64-bit numbers. It is perhaps worth noting that the bswap_64 macro in glibc splits the 64-bit value into 32-bit halves which are then reversed independently, thus side-stepping this weakness of gcc.

    As a side note, ARM RVCT (armcc) compiles those functions perfectly into one and two REV instructions, respectively.

    AVR32

    There is not much to report here. The latest gcc version available is 4.2.4, which doesn’t appear to have the bswap functions. The other three are handled nicely, even using a bit-reverse for __builtin_ctz.

    MIPS / MIPS64

    The situation MIPS is similar to ARM. Both bswap builtins result in external libgcc calls, the rest giving sensible code.

    PowerPC

    I scarcely believe my eyes, but this one is actually not bad. The PowerPC has no byte-reversal instructions, yet someone seems to have taken the time to teach gcc a good instruction sequence for this operation. The PowerPC does have some powerful rotate-and-mask instructions which come in handy here. First the 32-bit version :

    rotlwi  r0,r3,8
    rlwimi  r0,r3,24,0,7
    rlwimi  r0,r3,24,16,23
    mr      r3,r0
    blr
    

    The 64-bit byte-reversal simply applies the above code on each half of the value :

    rotlwi  r0,r3,8
    rlwimi  r0,r3,24,0,7
    rlwimi  r0,r3,24,16,23
    rotlwi  r3,r4,8
    rlwimi  r3,r4,24,0,7
    rlwimi  r3,r4,24,16,23
    mr      r4,r0
    blr
    

    Although I haven’t analysed that code carefully, it looks pretty good.

    PowerPC64

    Doing 64-bit operations is easier on a 64-bit CPU, right ? For you and me perhaps, but not for gcc. Here __builtin_bswap64 gives us the now familiar __bswapdi2 call, and while not as bad as the ARM version, it is not pretty :

    rldicr  r0,r3,8,55
    rldicr  r10,r3,56,7
    rldicr  r0,r0,56,15
    rldicl  r11,r3,8,56
    rldicr  r9,r3,16,47
    or      r11,r10,r11
    rldicr  r9,r9,48,23
    rldicl  r10,r0,24,40
    rldicr  r0,r3,24,39
    or      r11,r11,r10
    rldicl  r9,r9,40,24
    rldicr  r0,r0,40,31
    or      r9,r11,r9
    rlwinm  r10,r3,0,0,7
    rldicl  r0,r0,56,8
    or      r0,r9,r0
    rldicr  r10,r10,8,55
    rlwinm  r11,r3,0,8,15
    or      r0,r0,r10
    rldicr  r11,r11,24,39
    rlwinm  r3,r3,0,16,23
    or      r0,r0,r11
    rldicr  r3,r3,40,23
    or      r3,r0,r3
    blr
    

    That is 6 times longer than the (presumably) hand-written 32-bit version.

    x86 / x86_64

    As one might expect, results on x86 are good. All the tested functions use the available special instructions. One word of caution though : the bit-counting instructions are very slow on some implementations, specifically the Atom, AMD chips, and the notoriously slow Pentium4E.

    Conclusion

    In conclusion, I would say gcc builtins can be useful to avoid fragile inline assembler. Before using them, however, one should make sure they are not in fact harmful on the required targets. Not even those builtins mapping directly to CPU instructions can be trusted.

  • aarch64 : vp9mc : Simplify the extmla macro parameters

    16 décembre 2016, par Martin Storsjö
    aarch64 : vp9mc : Simplify the extmla macro parameters
    

    Fold the field lengths into the macro.

    This makes the macro invocations much more readable, when the
    lines are shorter.

    This also makes it easier to use only half the registers within
    the macro.

    Signed-off-by : Martin Storsjö <martin@martin.st>

    • [DBH] libavcodec/aarch64/vp9mc_neon.S