
Recherche avancée
Autres articles (41)
-
Taille des images et des logos définissables
9 février 2011, parDans beaucoup d’endroits du site, logos et images sont redimensionnées pour correspondre aux emplacements définis par les thèmes. L’ensemble des ces tailles pouvant changer d’un thème à un autre peuvent être définies directement dans le thème et éviter ainsi à l’utilisateur de devoir les configurer manuellement après avoir changé l’apparence de son site.
Ces tailles d’images sont également disponibles dans la configuration spécifique de MediaSPIP Core. La taille maximale du logo du site en pixels, on permet (...) -
Mediabox : ouvrir les images dans l’espace maximal pour l’utilisateur
8 février 2011, parLa visualisation des images est restreinte par la largeur accordée par le design du site (dépendant du thème utilisé). Elles sont donc visibles sous un format réduit. Afin de profiter de l’ensemble de la place disponible sur l’écran de l’utilisateur, il est possible d’ajouter une fonctionnalité d’affichage de l’image dans une boite multimedia apparaissant au dessus du reste du contenu.
Pour ce faire il est nécessaire d’installer le plugin "Mediabox".
Configuration de la boite multimédia
Dès (...) -
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)
Sur d’autres sites (3477)
-
AWS lambda SAM deploy error - Template format error : Unresolved resource dependencies
1er juin 2022, par mozengeI have am trying to deploy an aws lambda function using the SAM cli. I have some layers defined in the sam template. Testing locally using
sam local start-api
works quite well. The but deploying using thesam deploy --guided
command throws the following error
Error: Failed to create changeset for the stack: sam-app, ex: Waiter ChangeSetCreateComplete failed: Waiter encountered a terminal failure state: For expression "Status" we matched expected path: "FAILED" Status: FAILED. Reason: Template format error: Unresolved resource dependencies [arn:aws:lambda:us-west-1:338231645678:layer:ffmpeg:1] in the Resources block of the template


The SAM template is as follows


AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: >
 video-processor-functions

 Functions to generate gif and thumbnail from uploaded videos
 
# More info about Globals: https://github.com/awslabs/serverless-application-model/blob/master/docs/globals.rst
Globals:
 Function:
 Timeout: 3
 Tracing: Active

Resources:
 VideoProcessorFunctions:
 Type: AWS::Serverless::Function # More info about Function Resource: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#awsserverlessfunction
 Properties:
 CodeUri: src/
 Handler: app.lambdaHandler
 Runtime: nodejs14.x
 # timeout in seconds - 2 minutes
 Timeout: 120
 Layers:
 - !Ref VideoProcessorDepLayer
 - !Ref arn:aws:lambda:us-west-1:338231645678:layer:ffmpeg:1
 Architectures:
 - x86_64
 Events:
 HelloWorld:
 Type: Api # More info about API Event Source: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#api
 Properties:
 Path: /hello
 Method: get

 VideoProcessorDepLayer:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: mh-video-processor-dependencies
 Description: Dependencies for sam app [video-processor-functions]
 ContentUri: dependencies/
 CompatibleRuntimes:
 - nodejs14.17
 LicenseInfo: 'MIT'
 RetentionPolicy: Retain

Outputs:
 # ServerlessRestApi is an implicit API created out of Events key under Serverless::Function
 # Find out more about other implicit resources you can reference within SAM
 # https://github.com/awslabs/serverless-application-model/blob/master/docs/internals/generated_resources.rst#api
 HelloWorldApi:
 Description: "API Gateway endpoint URL for Prod stage for Hello World function"
 Value: !Sub "https://${ServerlessRestApi}.execute-api.${AWS::Region}.amazonaws.com/Prod/hello/"
 VideoProcessorFunctions:
 Description: "Generate GIF and Thumnail from Video"
 Value: !GetAtt VideoProcessorFunctions.Arn
 VideoProcessorFunctionsIamRole:
 Description: "Implicit IAM Role created for MH Video Processor function"
 Value: !GetAtt VideoProcessorFunctionsRole.Arn




Any ideas what i'm doing wrong ?


-
I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, **it show but in fact, I can't hear any sound
19 avril 2022, par Siti MaynaSo I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, it show but in fact, I can't hear any sound. Another fact is, that I tried to use the sample audio from https://developer.amazon.com/en-US/docs/alexa/custom-skills/ask-soundlibrary.html and it is worked, but why it won't work when it comes from my own S3 Bucket ?


Notes :


I've tried to test the skill using my mobile phone also.


I've tried to encode the audio using FFmpeg.


I've tried to use Jovo to convert the audio. https://v3.jovo.tech/audio-converter


I don't know how to fix this error.


There is no error message on cloud watch.


Assumptions :
There is some problem related to the audio resources or there is more set to play audio from S3 Bucket since the sample audio is working.


Steps to reproduce :




Build the interaction model






Encode the audio to make it Alexa skill friendly (fulfill the requirements, like sample rate, etc), I used and tried all of these :




A :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 16000 -write_xing 0 



B :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 24000 -write_xing 0 



C :


ffmpeg -y -i input.mp3 -ar 16000 -ab 48k -codec:a libmp3lame -ac 1 output.mp3





Upload the audio resources on S3Bucket
Audio sample on s3 storage but none of them are produce any sounds






Use the link and insert it to APLA.json





 {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 }




notes : I change the link sources based on audio that I tried.




the intent on lambda_function.py :




def _load_apl_document(file_path):
 # type: (str) -> Dict[str, Any]
 """Load the apl json document at the path into a dict object."""
 with open(file_path) as f:
 return json.load(f)

class LaunchRequestHandler(AbstractRequestHandler):
 """Handler for Skill Launch."""
 def can_handle(self, handler_input):
 # type: (HandlerInput) -> bool

 return ask_utils.is_request_type("LaunchRequest")(handler_input)

 def handle(self, handler_input):
 # type: (HandlerInput) -> Response
 logger.info("In LaunchRequestHandler")

 # type: (HandlerInput) -> Response
 speak_output = "Hello World!"
 # .ask("add a reprompt if you want to keep the session open for the user to respond")

 return (
 handler_input.response_builder
 #.speak(speak_output)
 .add_directive(
 RenderDocumentDirective(
 token="pagerToken",
 document=_load_apl_document("APLA.json"),
 datasources={}
 )
 )
 .response
 )





Deploy






Test it






The result of the test on my end :

The response for testing




the JSON response :


{
 "body": {
 "version": "1.0",
 "response": {
 "directives": [
 {
 "type": "Alexa.Presentation.APLA.RenderDocument",
 "token": "pagerToken",
 "document": {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 },
 "datasources": {}
 }
 ],
 "type": "_DEFAULT_RESPONSE"
 },
 "sessionAttributes": {},
 "userAgent": "ask-python/1.16.1 Python/3.7.12"
 }
}





On my cloud Watch :
Cloud Watch




-
FFMPEG and AWS : What's the most efficient way to handle this ?
28 mai 2022, par Red VicI'm new to AWS and I originally built the FFmpeg functions on my Node.JS API. But I realized this is the wrong way to do it in a real-world app, and that you need to use separate Lambda functions in AWS that handle the video editing separately from the main server.


I'm mainly a front-end developer but I'm open to learning new things.


I basically have the following process in my app :


- 

- User uploads video.
- I need to take that video and add a watermark to it.
- I then need a copy of the watermarked video in a smaller resolution.
- I then need a 6 seconds GIF of the smaller resolution video.
- Finally, I need to upload the 3 edited files (2 .mp4's and 1 .gif) to S3, and remove the original, non-watermarked video.












Here are my questions to be clear :


- 

- Should I upload the original file to S3 or to the server ? And why ?
- Is the process above doable in a single Lambda function ? Or do I need more Lambda functions ?
- How would you handle this problem, personally ?








I originally built it by chaining one function to the next with promises, but AWS seems like a different world of doing things and the way I originally built it would not work.


Thanks a lot.


Update
Here are some tests I did with a couple videos :







 

Test 1 

Test 2 

Test 3 

Test 4 

Test 5 







 Original video resolution 

1080p 

1080p 

1080p 

1080p 

480p 




 Original video duration 

23 minutes 

15 minutes 

11 minutes 

3.5 minutes 

5 minutes 




 Step 1 duration (Watermarking original video) 

30 minutes 

18 minutes 

14 minutes 

4 minutes 

2 minutes 




 Step 2 duration (Watermarking lower resolution) 

5 minutes 

3 minutes 

3 minutes 

1 minute 

skip (already low res) 




 Step 3 duration (6 seconds GIF creation) 

negligible (15 seconds) 

negligible (10 seconds) 

negligible (7 seconds) 

negligible 

negligible 




 Total 

35 minutes 

21 minutes 

17 minutes 

5 minutes 

2 minutes