
Recherche avancée
Médias (91)
-
Head down (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Echoplex (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Discipline (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Letting you (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
1 000 000 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
999 999 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (28)
-
D’autres logiciels intéressants
12 avril 2011, parOn ne revendique pas d’être les seuls à faire ce que l’on fait ... et on ne revendique surtout pas d’être les meilleurs non plus ... Ce que l’on fait, on essaie juste de le faire bien, et de mieux en mieux...
La liste suivante correspond à des logiciels qui tendent peu ou prou à faire comme MediaSPIP ou que MediaSPIP tente peu ou prou à faire pareil, peu importe ...
On ne les connais pas, on ne les a pas essayé, mais vous pouvez peut être y jeter un coup d’oeil.
Videopress
Site Internet : (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (4726)
-
How can I stream raw video frames AND audio to FFMPEG with Python 2.7 ?
18 novembre 2017, par Just AskinI am streaming raw video frames from Pygame to FFMPEG, then sending to a rtmp stream, but for the life of me, I can’t figure out how to send live audio using the same Python module. It does not need to be the Pygame mixer, but I am not opposed to using it if that is where the best answer lies. I’m pretty sure it’s not though.
My question is this : What is the best strategy to send live audio output from a program to FFMPEG along with raw video frames simultaneously from the same Python module ?
My program is large, and eventually I would like to build options to switch audio inputs from a queue of music, a microphone, or any other random sounds from any program I want to use. But for the time being, I just want something to work. I am starting off with a simple Espeak command.
Here is my Python commands :
command = ['ffmpeg', '-re', '-framerate', '22', '-s', '1280x720', '-pix_fmt', 'rgba', '-f', 'rawvideo', '-i', '-', '-f', 's16le', '-ar', '22500', '-i', '/tmp/audio', '-preset', ultrafast', '-pix_fmt', 'rgba', '-b:v', '2500', '-s', 'hd720', '-r', '25', '-g', '50', '-crf', '20', '-f', 'flv', 'rtmp://xxx' ]
pipe = sp.Popen(command, stdin=sp.PIPE)Then I send my frames to stdin from within my main
while True:
loop.The problem I run into with this strategy is I can’t figure out how to shove audio into FFMPEG from within Python without blocking the pipe. After hours of research, I am pretty confident I can’t use the pipe to send the audio along with the frames. I thought the named pipe was my solution (which works running Espeak outside of Python), but it blocks Python until the Espeak is done... so no good.
I assume I need threading for multiprocessing, but I cannot figure out from the official documentation or any other resources as to how I can solve my problem with it.
The
['-f', 's16le', '-ar', '22500', '-i', '/tmp/audio']
are settings that work if I run espeak from a separate terminal withespeak 'some text' --stdout > /tmp/audio
.I am using Centos 7, Python 2.7, pygame, the latest build of FFMPEG,
-
avcodec/ffv1_parser : Rename close to ffv1_close
19 février, par Zhao Zhiliavcodec/ffv1_parser : Rename close to ffv1_close
This fixed wasm checkasm failure
$ wasm-tools validate tests/checkasm/checkasm
error : wasisdk ://v25.0/build/sysroot/wasi-libc-wasm32-wasip1-threads/libc-top-half/musl/src/stdio/__stdio_close.c:24:9 function `__stdio_close` failed to validateCaused by :
0 : func 4581 failed to validate
1 : type mismatch : expected i32 but nothing on stack (at offset 0x43b770)Since close is declared as static function, it's more like a bug
in wasi sdk, but we can workaround it easily.Signed-off-by : Zhao Zhili <zhilizhao@tencent.com>
Reviewed-by : James Almer <jamrial@gmail.com> -
arm : vp9 : Add NEON optimizations of VP9 MC functions
14 novembre 2016, par Martin Storsjöarm : vp9 : Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.
The filter coefficients are signed values, where the product of the
multiplication with one individual filter coefficient doesn’t
overflow a 16 bit signed value (the largest filter coefficient is
127). But when the products are accumulated, the resulting sum can
overflow the 16 bit signed range. Instead of accumulating in 32 bit,
we accumulate the largest product (either index 3 or 4) last with a
saturated addition.(The VP8 MC asm does something similar, but slightly simpler, by
accumulating each half of the filter separately. In the VP9 MC
filters, each half of the filter can also overflow though, so the
largest component has to be handled individually.)Examples of relative speedup compared to the C version, from checkasm :
Cortex A7 A8 A9 A53
vp9_avg4_neon : 1.71 1.15 1.42 1.49
vp9_avg8_neon : 2.51 3.63 3.14 2.58
vp9_avg16_neon : 2.95 6.76 3.01 2.84
vp9_avg32_neon : 3.29 6.64 2.85 3.00
vp9_avg64_neon : 3.47 6.67 3.14 2.80
vp9_avg_8tap_smooth_4h_neon : 3.22 4.73 2.76 4.67
vp9_avg_8tap_smooth_4hv_neon : 3.67 4.76 3.28 4.71
vp9_avg_8tap_smooth_4v_neon : 5.52 7.60 4.60 6.31
vp9_avg_8tap_smooth_8h_neon : 6.22 9.04 5.12 9.32
vp9_avg_8tap_smooth_8hv_neon : 6.38 8.21 5.72 8.17
vp9_avg_8tap_smooth_8v_neon : 9.22 12.66 8.15 11.10
vp9_avg_8tap_smooth_64h_neon : 7.02 10.23 5.54 11.58
vp9_avg_8tap_smooth_64hv_neon : 6.76 9.46 5.93 9.40
vp9_avg_8tap_smooth_64v_neon : 10.76 14.13 9.46 13.37
vp9_put4_neon : 1.11 1.47 1.00 1.21
vp9_put8_neon : 1.23 2.17 1.94 1.48
vp9_put16_neon : 1.63 4.02 1.73 1.97
vp9_put32_neon : 1.56 4.92 2.00 1.96
vp9_put64_neon : 2.10 5.28 2.03 2.35
vp9_put_8tap_smooth_4h_neon : 3.11 4.35 2.63 4.35
vp9_put_8tap_smooth_4hv_neon : 3.67 4.69 3.25 4.71
vp9_put_8tap_smooth_4v_neon : 5.45 7.27 4.49 6.52
vp9_put_8tap_smooth_8h_neon : 5.97 8.18 4.81 8.56
vp9_put_8tap_smooth_8hv_neon : 6.39 7.90 5.64 8.15
vp9_put_8tap_smooth_8v_neon : 9.03 11.84 8.07 11.51
vp9_put_8tap_smooth_64h_neon : 6.78 9.48 4.88 10.89
vp9_put_8tap_smooth_64hv_neon : 6.99 8.87 5.94 9.56
vp9_put_8tap_smooth_64v_neon : 10.69 13.30 9.43 14.34For the larger 8tap filters, the speedup vs C code is around 5-14x.
This is significantly faster than libvpx’s implementation of the same
functions, at least when comparing the put_8tap_smooth_64 functions
(compared to vpx_convolve8_horiz_neon and vpx_convolve8_vert_neon from
libvpx).Absolute runtimes from checkasm :
Cortex A7 A8 A9 A53
vp9_put_8tap_smooth_64h_neon : 20150.3 14489.4 19733.6 10863.7
libvpx vpx_convolve8_horiz_neon : 52623.3 19736.4 21907.7 25027.7vp9_put_8tap_smooth_64v_neon : 14455.0 12303.9 13746.4 9628.9
libvpx vpx_convolve8_vert_neon : 42090.0 17706.2 17659.9 16941.2Thus, on the A9, the horizontal filter is only marginally faster than
libvpx, while our version is significantly faster on the other cores,
and the vertical filter is significantly faster on all cores. The
difference is especially large on the A7.The libvpx implementation does the accumulation in 32 bit, which
probably explains most of the differences.This is an adapted cherry-pick from libav commits
ffbd1d2b0002576ef0d976a41ff959c635373fdc,
392caa65df3efa8b2d48a80f08a6af4892c61c08,
557c1675cf0e803b2fee43b4c8b58433842c84d0 and
11623217e3c9b859daee544e31acdd0821b61039.Signed-off-by : Ronald S. Bultje <rsbultje@gmail.com>