Recherche avancée

Médias (91)

Autres articles (32)

  • Création définitive du canal

    12 mars 2010, par

    Lorsque votre demande est validée, vous pouvez alors procéder à la création proprement dite du canal. Chaque canal est un site à part entière placé sous votre responsabilité. Les administrateurs de la plateforme n’y ont aucun accès.
    A la validation, vous recevez un email vous invitant donc à créer votre canal.
    Pour ce faire il vous suffit de vous rendre à son adresse, dans notre exemple "http://votre_sous_domaine.mediaspip.net".
    A ce moment là un mot de passe vous est demandé, il vous suffit d’y (...)

  • Les tâches Cron régulières de la ferme

    1er décembre 2010, par

    La gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
    Le super Cron (gestion_mutu_super_cron)
    Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

Sur d’autres sites (4403)

  • How to use (django-celery,RQ) worker to execute a video filetype conversion (ffmpeg) in django on heroku (My code works locally)

    15 janvier 2013, par GetItDone

    One part of my website includes a form that allows users to upload video. I use ffmpeg to convert the video to flv. My media and static files are stored on Amazon S3. I can get everything to work perfectly locally, however I can't seem to figure out how to use a worker to run the video conversion subprocess in production. I have dj-celery and rq installed in my app. The code in my view that I was able to get to work locally is :

    #views.py
    def upload_broadcast(request):
       if request.method == 'POST':
           form = VideoUploadForm(request.POST, request.FILES)
           if form.is_valid():
               new_video=form.save()
               def convert_to_flv(video):
                   filename = video.video_upload
                   sourcefile = "%s%s" % (settings.MEDIA_ROOT, filename)
                   flvfilename = "%s.flv" % video.id
                   imagefilename = "%s.png" % video.id
                   thumbnailfilename = "%svideos/flv/%s" % (settings.MEDIA_ROOT, imagefilename)
                   targetfile = "%svideos/flv/%s" % (settings.MEDIA_ROOT, flvfilename)
                   ffmpeg = "ffmpeg -i %s -acodec mp3 -ar 22050 -f flv -s 320x240 %s" % (sourcefile, targetfile)
                   grabimage = "ffmpeg -y -i %s -vframes 1 -ss 00:00:02 -an -vcodec png -f rawvideo -s 320x240 %s" % (sourcefile, thumbnailfilename)
                   print ("SOURCE: %s" % sourcefile)
                   print ("TARGET: %s" % targetfile)
                   print ("TARGET IMAGE: %s" % thumbnailfilename)
                   print ("FFMPEG TASK CODE: %s" % ffmpeg)
                   print ("IMAGE TASK CODE: %s" % grabimage)
                   try:
                       ffmpegresult = subprocess.call(ffmpeg)
                       print "---------------FFMPEG---------------"
                       print ffmpegresult
                   except:
                       print "Not working."
                   try:
                       videothumbnail = subprocess.call(grabimage)
                       print "---------------IMAGE---------------"
                       print videothumbnail
                   except:
                       print "Not working."
                   video.flvfilename = flvfilename
                   video.videothumbnail = imagefilename
                   video.save()

               convert_to_flv(new_video)

               return HttpResponseRedirect('/video_list/')
       else:
    ...

    This is my first time trying to use a worker (or ever pushing a project to production), so even with the documentation it is still unclear to me what I need to do. I have tried several different things but nothing seems to work. Is there just a simple way to tell celery to run the ffmpegresult = subprocess.call(ffmpeg) ? Thanks in advance for any help or insight.

    EDIT- Added heroku logs

    2013-01-10T20:58:57+00:00 app[web.1]: TARGET: /media/videos/flv/8.flv
    2013-01-10T20:58:57+00:00 app[web.1]: IMAGE TASK CODE: ffmpeg -y -i /media/videos/practice.wmv -vframes 1 -ss 00:00:02 - an -vcodec png -f rawvideo -s 320x240 /media/videos/flv/8.png
    2013-01-10T20:58:57+00:00 app[web.1]: SOURCE: /media/videos/practice.wmv
    2013-01-10T20:58:57+00:00 app[web.1]: FFMPEG TASK CODE: ffmpeg -i /media/videos/practice.wmv -acodec mp3 -ar 22050 -f fl v -s 320x240 /media/videos/flv/8.flv
    2013-01-10T20:58:57+00:00 app[web.1]: TARGET IMAGE: /media/videos/flv/8.png
    2013-01-10T20:58:57+00:00 app[web.1]: Not working.
    2013-01-10T20:58:57+00:00 app[web.1]: Not working.

    NEWER EDIT

    I tried adding a tasks.py and added the task :

    celery = Celery('tasks', broker='redis://guest@localhost//')

    @celery.task
    def ffmpeg_task(video):
       converted_file = subprocess.call(video)
       return converted_file

    then I changed the relevant section of my view to :

    ...
    try:
       ffmpeg_task.delay(ffmpeg)
       print "---------------FFMPEG---------------"
       print ffmpegresult
    except:
       print "Not working."
    ...

    My new logs are :

    2013-01-15T13:19:52+00:00 app[web.1]: TARGET IMAGE: /media/videos/flv/12.png
    2013-01-15T13:19:52+00:00 app[web.1]: SOURCE: /media/videos/practice.wmv
    2013-01-15T13:19:52+00:00 app[web.1]: FFMPEG TASK CODE: ffmpeg -i /media/videos/practice.wmv -acodec mp3 -ar 22050 -f fl v -s 320x240 /media/videos/flv/12.flv
    2013-01-15T13:19:52+00:00 app[web.1]: IMAGE TASK CODE: ffmpeg -y -i /media/videos/practice.wmv -vframes 1 -ss 00:00:02 -an -vcodec png -f rawvideo -s 320x240 /media/videos/flv/12.png
    2013-01-15T13:19:52+00:00 app[web.1]: TARGET: /media/videos/flv/12.flv
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [2] [CRITICAL] WORKER TIMEOUT (pid:12)
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [2] [CRITICAL] WORKER TIMEOUT (pid:12)
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [19] [INFO] Booting worker with pid: 19

    Am I completely missing something ? I'll keep trying, but will be very appreciative of any direction or assistance.

  • Does anyone know any filters for better low quality video ?

    7 septembre 2022, par kasten

    So maybe my question can be closed, but anyway I'm researching and looking for a tool that can do the following with video files :

    


    Here's an example of what I want :

    


    When you put a low quality video on your TV and look into a mirror that reflects that image, it appears to be sharper, acting as a filter to improve the video.

    


    I don't know if anyone has thought of this fact or if there is a software that does something similar. I know low quality video can't get any better, but why is there an improvement when looking in the mirror ?

    


    I appreciate if anyone can comment, as I'm not a professional in video.

    


  • Real time livestreaming - RPI FFmpeg and H5 Player

    29 avril 2022, par Victor

    I work at a telehealth company and we are using connected medical devices in order to provide the doctor with real time information from these equipements, the equipements are used by a trained health Professional.

    


    Those devices work with video and audio. Right now, we are using them with peerjs (so peer to peer connection) but we are trying to move away from that and have a RPI with his only job to stream data (so streaming audio and video).

    


    Because the equipements are supposed to be used with instructions from a doctor we need the doctor to receive the data in real time.

    


    But we also need the trained health professional to see what he is doing (so we need a local feed from the equipement)

    


    How do we capture audio and video

    


    We are using ffmpeg with a go client that is in charge of managing the ffmpeg clients and stream them to a SRS server.
This works but we are having a 2-3 sec delay when streaming the data. (rtmp from ffmpeg and flv on the front end)

    


    ffmpeg settings :

    


    ("ffmpeg", "-f", "v4l2", `-i`, "*/video0", "-f", "flv", "-vcodec", "libx264", "-x264opts", "keyint=15", "-preset", "ultrafast", "-tune", "zerolatency", "-fflags", "nobuffer", "-b:a", "160k", "-threads", "0", "-g", "0", "rtmp://srs-url")


    


    My questions

    


      

    • Is there a way for this set up to achieve low latency (<1 sec) (for the nurse and for the doctor) ?
    • &#xA;

    • Is the way I want to achieve this good ? Is there a batter way ?
    • &#xA;

    &#xA;

    Flow schema

    &#xA;

    Data exchange and use case flow :

    &#xA;

    Data exchange and use case flow

    &#xA;

    &#xA;

    Note : The nurse and doctor use HTTP-FLV to play the live stream, for low latency.

    &#xA;

    &#xA;