
Recherche avancée
Médias (1)
-
Revolution of Open-source and film making towards open film making
6 octobre 2011, par
Mis à jour : Juillet 2013
Langue : English
Type : Texte
Autres articles (112)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Script d’installation automatique de MediaSPIP
25 avril 2011, parAfin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
La documentation de l’utilisation du script d’installation (...) -
Les formats acceptés
28 janvier 2010, parLes commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
ffmpeg -codecs ffmpeg -formats
Les format videos acceptés en entrée
Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
Les formats vidéos de sortie possibles
Dans un premier temps on (...)
Sur d’autres sites (10865)
-
How to accurately detect the start of the main beat and soundtracks in diverse audio tracks ?
18 juin 2024, par SnoofFloofI'm working on a project where I need to edit soundtracks. The challenge is to detect when the main beat and melody of any given soundtrack is properly developed. I am certain there is better terminology to describe what I am aiming for, but ideally, I want to skip the "build-up" and immediately have the song starting at the "main part". This needs to work for various songs across different genres, which often have different structures and onset patterns, making it difficult to streamline the process.


For example :


https://www.youtube.com/watch?v=P77CNtHrnmI -> I would want to my code to identify the onset at 0:24


https://www.youtube.com/watch?v=OOsPCR8SyRo -> Onset detection at 0:12


https://www.youtube.com/watch?v=XKiZBlelIzc -> Onset detection at 0:19


I've tried using librosa to analyze the onset strength and detect beats, but the current implementation either detects the very beginning of the song or fails to consistently identify when the beat is fully developed.


This was my approach ;


def analyze_and_edit_audio(input_file, output_file):
 y, sr = librosa.load(input_file)
 tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
 beat_times = librosa.frames_to_time(beat_frames, sr=sr)
 main_beat_start = beat_times[0]



I have very little experience with librosa/audio editing, so I would appreciate any suggestions you might have !


-
arm : vp9 : Add NEON optimizations of VP9 MC functions
14 novembre 2016, par Martin Storsjöarm : vp9 : Add NEON optimizations of VP9 MC functions
This work is sponsored by, and copyright, Google.
The filter coefficients are signed values, where the product of the
multiplication with one individual filter coefficient doesn’t
overflow a 16 bit signed value (the largest filter coefficient is
127). But when the products are accumulated, the resulting sum can
overflow the 16 bit signed range. Instead of accumulating in 32 bit,
we accumulate the largest product (either index 3 or 4) last with a
saturated addition.(The VP8 MC asm does something similar, but slightly simpler, by
accumulating each half of the filter separately. In the VP9 MC
filters, each half of the filter can also overflow though, so the
largest component has to be handled individually.)Examples of relative speedup compared to the C version, from checkasm :
Cortex A7 A8 A9 A53
vp9_avg4_neon : 1.71 1.15 1.42 1.49
vp9_avg8_neon : 2.51 3.63 3.14 2.58
vp9_avg16_neon : 2.95 6.76 3.01 2.84
vp9_avg32_neon : 3.29 6.64 2.85 3.00
vp9_avg64_neon : 3.47 6.67 3.14 2.80
vp9_avg_8tap_smooth_4h_neon : 3.22 4.73 2.76 4.67
vp9_avg_8tap_smooth_4hv_neon : 3.67 4.76 3.28 4.71
vp9_avg_8tap_smooth_4v_neon : 5.52 7.60 4.60 6.31
vp9_avg_8tap_smooth_8h_neon : 6.22 9.04 5.12 9.32
vp9_avg_8tap_smooth_8hv_neon : 6.38 8.21 5.72 8.17
vp9_avg_8tap_smooth_8v_neon : 9.22 12.66 8.15 11.10
vp9_avg_8tap_smooth_64h_neon : 7.02 10.23 5.54 11.58
vp9_avg_8tap_smooth_64hv_neon : 6.76 9.46 5.93 9.40
vp9_avg_8tap_smooth_64v_neon : 10.76 14.13 9.46 13.37
vp9_put4_neon : 1.11 1.47 1.00 1.21
vp9_put8_neon : 1.23 2.17 1.94 1.48
vp9_put16_neon : 1.63 4.02 1.73 1.97
vp9_put32_neon : 1.56 4.92 2.00 1.96
vp9_put64_neon : 2.10 5.28 2.03 2.35
vp9_put_8tap_smooth_4h_neon : 3.11 4.35 2.63 4.35
vp9_put_8tap_smooth_4hv_neon : 3.67 4.69 3.25 4.71
vp9_put_8tap_smooth_4v_neon : 5.45 7.27 4.49 6.52
vp9_put_8tap_smooth_8h_neon : 5.97 8.18 4.81 8.56
vp9_put_8tap_smooth_8hv_neon : 6.39 7.90 5.64 8.15
vp9_put_8tap_smooth_8v_neon : 9.03 11.84 8.07 11.51
vp9_put_8tap_smooth_64h_neon : 6.78 9.48 4.88 10.89
vp9_put_8tap_smooth_64hv_neon : 6.99 8.87 5.94 9.56
vp9_put_8tap_smooth_64v_neon : 10.69 13.30 9.43 14.34For the larger 8tap filters, the speedup vs C code is around 5-14x.
This is significantly faster than libvpx’s implementation of the same
functions, at least when comparing the put_8tap_smooth_64 functions
(compared to vpx_convolve8_horiz_neon and vpx_convolve8_vert_neon from
libvpx).Absolute runtimes from checkasm :
Cortex A7 A8 A9 A53
vp9_put_8tap_smooth_64h_neon : 20150.3 14489.4 19733.6 10863.7
libvpx vpx_convolve8_horiz_neon : 52623.3 19736.4 21907.7 25027.7vp9_put_8tap_smooth_64v_neon : 14455.0 12303.9 13746.4 9628.9
libvpx vpx_convolve8_vert_neon : 42090.0 17706.2 17659.9 16941.2Thus, on the A9, the horizontal filter is only marginally faster than
libvpx, while our version is significantly faster on the other cores,
and the vertical filter is significantly faster on all cores. The
difference is especially large on the A7.The libvpx implementation does the accumulation in 32 bit, which
probably explains most of the differences.This is an adapted cherry-pick from libav commits
ffbd1d2b0002576ef0d976a41ff959c635373fdc,
392caa65df3efa8b2d48a80f08a6af4892c61c08,
557c1675cf0e803b2fee43b4c8b58433842c84d0 and
11623217e3c9b859daee544e31acdd0821b61039.Signed-off-by : Ronald S. Bultje <rsbultje@gmail.com>
-
gst-inspect-1.0 do not see avdec_h264
16 octobre 2020, par Marat ZakirovPreviously I installed gstreamer via conda and its (good) plugins
next I installed gst-libav via
sudo apt-get install gstreamer1.0-libav
next I usedapt-file list gstreamer1.0-libav
to see installation path and found it to be/usr/lib/x86_64-linux-gnu/gstreamer-1.0/
next I read running gstream manual and then

GST_PLUGIN_PATH=/usr/lib/x86_64-linux-gnu/gstreamer-1.0/ gst-inspect-1.0 avdec_h264

(base) marat@user-System-Product-Name:~$ ls -lh /usr/lib/x86_64-linux-gnu/gstreamer-1.0/ | grep av
-rw-r--r-- 1 root root 181K мар 21 2020 libgstavi.so
-rw-r--r-- 1 root root 56K мар 21 2020 libgstinterleave.so
-rw-r--r-- 1 root root 251K дек 9 2019 libgstlibav.so
-rw-r--r-- 1 root root 15K мар 21 2020 libgstnavigationtest.so
-rw-r--r-- 1 root root 40K мар 21 2020 libgstwavenc.so
-rw-r--r-- 1 root root 48K мар 21 2020 libgstwavpack.so
-rw-r--r-- 1 root root 72K мар 21 2020 libgstwavparse.so



It found many new modules but didn't found avdec_h264. What I am missing ?


UPDATE :


I just want way to use gstreamer via conda virtenv python appliation. If you know valid way to do so I will consider your reply as answer.