Recherche avancée

Médias (2)

Mot : - Tags -/map

Autres articles (40)

  • Librairies et binaires spécifiques au traitement vidéo et sonore

    31 janvier 2010, par

    Les logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
    Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
    Binaires complémentaires et facultatifs flvtool2 : (...)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (6042)

  • swresample/resample : improve bessel function accuracy and speed

    2 novembre 2015, par Ganesh Ajjanagadde
    swresample/resample : improve bessel function accuracy and speed
    

    This improves accuracy for the bessel function at large arguments, and this in turn
    should improve the quality of the Kaiser window. It also improves the
    performance of the bessel function and hence build_filter by 20%.
    Details are given below.

    Algorithm : taken from the Boost project, who have done a detailed
    investigation of the accuracy of their method, as compared with e.g the
    GNU Scientific Library (GSL) :
    http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html.
    Boost source code (also cited and licensed in the code) :
    https://searchcode.com/codesearch/view/14918379/.

    Accuracy : sample values may be obtained as follows. i0 denotes the old bessel code,
    i0_boost the approach here, and i0_real an arbitrary precision result (truncated) from Wolfram Alpha :
    type "bessel i0(6.0)" to reproduce. These are evaluation points that occur for
    the default kaiser_beta = 9.

    Some illustrations :
    bessel(8.0)
    i0 (8.000000) = 427.564115721804739678191254
    i0_boost(8.000000) = 427.564115721804796521610115
    i0_real (8.000000) = 427.564115721804785177396791

    bessel(6.0)
    i0 (6.000000) = 67.234406976477956163762428
    i0_boost(6.000000) = 67.234406976477970374617144
    i0_real (6.000000) = 67.234406976477975326188025

    Reason for accuracy : Main accuracy benefits come at larger bessel arguments, where the
    Taylor-Maclaurin method is not that good : 23+ iterations
    (at large arguments, since the series is about 0) can cause
    significant floating point error accumulation.

    Benchmarks : Obtained on x86-64, Haswell, GNU/Linux via a loop calling
    build_filter 1000 times :
    test : fate-swr-resample-dblp-44100-2626

    new :
    995894468 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1029719302 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    984101131 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    old :
    1250020763 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1246353282 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    1220017565 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    A further 5% may be squeezed by enabling -ftree-vectorize. However,
    this is a separate issue from this patch.

    Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
    Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>

    • [DH] libswresample/resample.c
  • swresample/resample : speed up build_filter for Blackman-Nuttall filter

    5 novembre 2015, par Ganesh Ajjanagadde
    swresample/resample : speed up build_filter for Blackman-Nuttall filter
    

    This uses the trigonometric double and triple angle formulae to avoid
    repeated (expensive) evaluation of libc’s cos().

    Sample benchmark (x86-64, Haswell, GNU/Linux)
    test : fate-swr-resample-dblp-44100-2626
    old :
    1104466600 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1096765286 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    1070479590 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    new :
    588861423 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    591262754 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    577355145 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    This results in small differences with the old expression :
    difference (worst case on [0, 2*M_PI]), argmax 0.008 :
    max diff (relative) : 0.000000000000157289807188
    blackman_old(0.008) : 0.000363951585488813192382
    blackman_new(0.008) : 0.000363951585488755946507

    These are judged to be insignificant for the performance gain. PSNR to
    reference file is unchanged up to second decimal point for instance.

    Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
    Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>

    • [DH] libswresample/resample.c
  • Animation speed adjustment using ffmpeg in Python

    5 novembre 2015, par neither-nor

    I’m been for years using stock ffmpeg script to sequentially snitch together temporal plots in Python. However, I cannot figure out the trivial issue of how to, for instance, slow down the animation speed so that the resultant video file has a longer duration.

    Example :

    import matplotlib.pyplot as plt
    import os, sys

    for t in range(100):
       plt.cla()
       plt.text(0.5, 0.5, 'time %02d'%(t+1))
       plt.draw()

       fname = '_tmp%02d.png'%(t+1)
       plt.savefig(fname)

    os.system("ffmpeg -i _tmp%02d.png -pix_fmt yuv420p -r 20 -b:v 20M flipbook.mp4")
    os.system("rm _tmp*.png")    

    The resulting "flip book" takes 4s and the time stamp increases steadily. However, I tried to make the animation last twice as long by testing the following :

    1. Change 20 after -r to 1 : this still lasts 4s but now the time stamp "leaps" nonlinearly

    2. Change 20M to 1M : no discernible effect

    I can’t find much information about this line of code, either the usage of each flag or how to modify aspects of it (e.g.,speed).