Recherche avancée

Médias (2)

Mot : - Tags -/kml

Autres articles (8)

  • Qualité du média après traitement

    21 juin 2013, par

    Le bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
    Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Emballe médias : à quoi cela sert ?

    4 février 2011, par

    Ce plugin vise à gérer des sites de mise en ligne de documents de tous types.
    Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;

Sur d’autres sites (5084)

  • A Comprehensive Guide to Robust Digital Marketing Analytics

    15 novembre 2023, par Erin — Analytics Tips

    First impressions are everything. This is not only true for dating and job interviews but also for your digital marketing strategy. Like a poorly planned job application getting tossed in the “no thank you” pile, 38% of visitors to your website will stop engaging with your content if they find the layout unpleasant. Thankfully, digital marketers can access data that can be harnessed to optimise websites and turn those “no thank you’s” into “absolutely’s.”

    So, how can we transform raw data into valuable insights that pay off ? The key is web analytics tools that can help you make sense of it all while collecting data ethically. In this article, we’ll equip you with ways to take your digital marketing strategy to the next level with the power of web analytics.

    What are the different types of digital marketing analytics ?

    Digital marketing analytics are like a cipher into the complex behaviour of your buyers. Digital marketing analytics help collect, analyse and interpret data from any touchpoint you interact with your buyers online. Whether you’re trying to gauge the effectiveness of a new email marketing campaign or improve your mobile app layout, there’s a way for you to make use of the insights you gain.

    Icons representing the 8 types of digital marketing analytics

    As we go through the eight commonly known types of digital marketing analytics, please note we’ll primarily focus on what falls under the umbrella of web analytics. 

    1. Web analytics help you better understand how users interact with your website. Good web analytics tools will help you understand user behaviour while securely handling user data. 
    2. Learn more about the effectiveness of your organisation’s social media platforms with social media analytics. Social media analytics include user engagement, post reach and audience demographics. 
    3. Email marketing analytics help you see how email campaigns are being engaged with.
    4. Search engine optimisation (SEO) analytics help you understand your website’s visibility in search engine results pages (SERPs). 
    5. Pay-per-click (PPC) or campaign analytics measure the performance of paid advertising campaigns.
    6. Content marketing analytics focus on how your content is performing with your audience. 
    7. Customer analytics helps organisations identify and examine buyer behaviour to retain the biggest spenders. 
    8. Mobile app analytics track user interactions within mobile applications. 

    Choosing which digital marketing analytics tools are the best fit for your organisation is not an easy task. When making these decisions, it’s critical to remember the ethical implications of data collection. Although data insights can be invaluable to your organisation, they won’t be of much use if you lose the trust of your users. 

    Tips and best practices for developing robust digital marketing analytics 

    So, what separates top-notch, robust digital marketing analytics from the rest ? We’ve already touched on it, but a big part involves respecting user privacy and ethically handling data. Data security should be on your list of priorities, alongside conversion rate optimisation when developing a digital marketing strategy. In this section, we will examine best practices for using digital marketing analytics while retaining user trust.

    Lightbulb with a target in the center being struck by arrows

    Clear objectives

    Before comparing digital marketing analytics tools, you should define clear and measurable goals. Try asking yourself what you need your digital marketing analytics strategy to accomplish. Do you want to improve conversion rates while remaining data compliant ? Maybe you’ve noticed users are not engaging with your platform and want to fix that. Save yourself time and energy by focusing on the most relevant pain points and areas of improvement.

    Choose the right tools for the job

    Don’t just base your decision on what other people tell you. Take the tool for a test drive — free trials allow you to test features and user interfaces and learn more about the platform before committing. When choosing digital marketing analytics tools, look for ones that ensure data accuracy as well as compliance with privacy laws like GDPR.

    Don’t overlook data compliance

    GDPR ensures organisations prioritise data protection and privacy. You could be fined up to €20 million, or 4% of the previous year’s revenue for violations. Without data compliance practices, you can say goodbye to the time and money spent on digital marketing strategies. 

    Don’t sacrifice data quality and accuracy

    Inaccurate and low-quality data can taint your analysis, making it hard to glean valuable insights from your digital marketing analytics efforts. Many analytics tools only show sampled data or use AI and ML to fill data gaps, potentially compromising the accuracy and completeness of your analytics. 

    When your analytics are based on incomplete or inaccurate data, it’s like trying to assemble a puzzle with missing pieces—you might get a glimpse of the whole picture, but it’s never quite clear. Accurate data isn’t just helpful—it’s the backbone of smart marketing strategies. It lets you make confident decisions and enables precise targeting for greater impact.

    Communicate your findings

    Having insights is one thing ; effectively communicating complex data findings is just as important. Customise dashboards to display key metrics aligned with your objectives. Make sure to automate reports, allowing stakeholders to stay updated without manual intervention. 

    Understand the user journey

    To optimise your conversion rates, you need to understand the user journey. Start by analysing visitors interactions with your website — this will help you identify conversion bottlenecks in your sales or lead generation processes. Implement A/B testing for landing page optimisation, refining elements like call-to-action buttons or copy, and leverage Form Analytics to make informed, data-driven improvements to your forms.

    Continuous improvement

    Learn from the data insights you gain, and iterate your marketing strategies based on the findings. Stay updated with evolving web analytics trends and technologies to leverage new growth opportunities. 

    Why you need web analytics to support your digital marketing analytics toolbox

    You wouldn’t set out on a roadtrip without a map, right ? Digital marketing analytics without insights into how users interact with your website are just as useless. Used ethically, web analytics tools can be an invaluable addition to your digital marketing analytics toolbox. 

    The data collected via web analytics reveals user interactions with your website. These could include anything from how long visitors stay on your page to their actions while browsing your website. Web analytics tools help you gather and understand this data so you can better understand buyer preferences. It’s like a domino effect : the more you understand your buyers and user behaviour, the better you can assess the effectiveness of your digital content and campaigns. 

    Web analytics reveal user behaviour, highlighting navigation patterns and drop-off points. Understanding these patterns helps you refine website layout and content, improving engagement and conversions for a seamless user experience.

    Magnifying glass examining various screens that contain data

    Concrete CMS harnessed the power of web analytics, specifically Matomo’s Form Analytics, to uncover crucial insights within their user onboarding process. Their data revealed a significant issue : the “address” input field was causing visitors to drop off and not complete the form, severely impacting the overall onboarding experience and conversion rate.

    Armed with these insights, Concrete CMS made targeted optimisations to the form, resulting in a substantial transformation. By addressing the specific issue identified through Form Analytics, they achieved an impressive outcome – a threefold increase in lead generation.

    This case is a great example of how web analytics can uncover customer needs and preferences and positively impact conversion rates. 

    Ethical implications of digital marketing analytics

    As we’ve touched on, digital marketing analytics are a powerful tool to help better understand online user behaviour. With great power comes great responsibility, however, and it’s a legal and ethical obligation for organisations to protect individual privacy rights. Let’s get into the benefits of practising ethical digital marketing analytics and the potential risks of not respecting user privacy : 

    • If someone uses your digital platform and then opens their email one day to find it filled with random targeted ad campaigns, they won’t be happy. Avoid losing user trust — and facing a potential lawsuit — by informing users what their data will be used for. Give them the option to consent to opt-in or opt-out of letting you use their personal information. If users are also assured you’ll safeguard personal information against unauthorised access, they’ll be more likely to trust you to handle their data securely.
    • Protecting data against breaches means investing in technology that will let you end-to-end encrypt and securely store data. Other important data-security best practices include access control, backing up data regularly and network and physical security of assets.

    A fine line separates digital marketing analytics and misusing user data — many companies have gotten into big trouble for crossing it. (By big trouble, we mean millions of dollars in fines.) When it comes to digital marketing analytics, you should never cut corners when it comes to user privacy and data security. This balance involves understanding what data can be collected and what should be collected and respecting user boundaries and preferences.

    A balanced scale with a salesperson on one side and money/profit on the other

    Learn more 

    We discussed a lot of facets of digital marketing analytics, namely how to develop a robust digital marketing strategy while prioritising data compliance. With Matomo, you can protect user data and respect user privacy while gaining invaluable insights into user behaviour with 100% accurate data. Save your organisation time and money by investing in a web analytics solution that gives you the best of both worlds. 

    If you’re ready to begin using ethical and robust digital marketing analytics on your website, try Matomo. Start your 21-day free trial now — no credit card required.

  • Unveiling GA4 Issues : 8 Questions from a Marketer That GA4 Can’t Answer

    8 janvier 2024, par Alex

    It’s hard to believe, but Universal Analytics had a lifespan of 11 years, from its announcement in March 2012. Despite occasional criticism, this service established standards for the entire web analytics industry. Many metrics and reports became benchmarks for a whole generation of marketers. It truly was an era.

    For instance, a lot of marketers got used to starting each workday by inspecting dashboards and standard traffic reports in the Universal Analytics web interface. There were so, so many of those days. They became so accustomed to Universal Analytics that they would enter reports, manipulate numbers, and play with metrics almost on autopilot, without much thought.

    However, six months have passed since the sunset of Universal Analytics – precisely on July 1, 2023, when Google stopped processing requests for resources using the previous version of Google Analytics. The time when data about visitors and their interactions with the website were more clearly structured within the UA paradigm is now in the past. GA4 has brought a plethora of opportunities to marketers, but along with those opportunities came a series of complexities.

    GA4 issues

    Since its initial announcement in 2020, GA4 has been plagued with errors and inconsistencies. It still has poor and sometimes illogical documentation, numerous restrictions, and peculiar interface solutions. But more importantly, the barrier to entry into web analytics has significantly increased.

    If you diligently follow GA4 updates, read the documentation, and possess skills in working with data (SQL and basic statistics), you probably won’t feel any problems – you know how to set up a convenient and efficient environment for your product and marketing data. But what if you’re not that proficient ? That’s when issues arise.

    In this article, we try to address a series of straightforward questions that less experienced users – marketers, project managers, SEO specialists, and others – want answers to. They have no time to delve into the intricacies of GA4 but seek access to the fundamentals crucial for their functionality.

    Previously, in Universal Analytics, they could quickly and conveniently address their issues. Now, the situation has become, to put it mildly, more complex. We’ve identified 8 such questions for which the current version of GA4 either fails to provide answers or implies that answers would require significant enhancements. So, let’s dive into them one by one.

    Question 1 : What are the most popular traffic sources on my website ?

    Seemingly a straightforward question. What does GA4 tell us ? It responds with a question : “Which traffic source parameter are you interested in ?”

    GA4 traffic source

    Wait, what ?

    People just want to know which resources bring them the most traffic. Is that really an issue ?

    Unfortunately, yes. In GA4, there are not one, not two, but three traffic source parameters :

    1. Session source.
    2. First User Source – the source of the first session for each user.
    3. Just the source – determined at the event or conversion level.

    If you wanted to open a report and draw conclusions quickly, we have bad news for you. Before you start ranking your traffic sources by popularity, you need to do some mental work on which parameter and in what context you will look. And even when you decide, you’ll need to make a choice in the selection of standard reports : work with the User Acquisition Report or Traffic Acquisition.

    Yes, there is a difference between them : the first uses the First User Source parameter, and the second uses the session source. And you need to figure that out too.

    Question 2 : What is my conversion rate ?

    This question concerns everyone, and it should be simple, implying a straightforward answer. But no.

    GA4 conversion rate

    In GA4, there are three conversion metrics (yes, three) :

    1. Session conversion – the percentage of sessions with a conversion.
    2. User conversion – the percentage of users who completed a conversion.
    3. First-time Purchaser Conversion – the share of active users who made their first purchase.

    If the last metric doesn’t interest us much, GA4 users can still choose something from the remaining two. But what’s next ? Which parameters to use for comparison ? Session source or user source ? What if you want to see the conversion rate for a specific event ? And how do you do this in analyses rather than in standard reports ?

    In the end, instead of an answer to a simple question, marketers get a bunch of new questions.

    Question 3. Can I trust user and session metrics ?

    Unfortunately, no. This may boggle the mind of those not well-versed in the mechanics of calculating user and session metrics, but it’s the plain truth : the numbers in GA4 and those in reality may and will differ.

    GA4 confidence levels

    The reason is that GA4 uses the HyperLogLog++ statistical algorithm to count unique values. Without delving into details, it’s a mechanism for approximate estimation of a metric with a certain level of error.

    This error level is quite well-documented. For instance, for the Total Users metric, the error level is 1.63% (for a 95% confidence interval). In simple terms, this means that 100,000 users in the GA4 interface equate to 100,000 1.63% in reality.

    Furthermore – but this is no surprise to anyone – GA4 samples data. This means that with too large a sample size or when using a large number of parameters, the application will assess your metrics based on a partial sample – let’s say 5, 10, or 30% of the entire population.

    It’s a reasonable assumption, but it can (and probably will) surprise marketers – the metrics will deviate from reality. All end-users can do (excluding delving into raw data methodologies) is to take this error level into account in their conclusions.

    Question 4. How do I calculate First Click attribution ?

    You can’t. Unfortunately, as of late, GA4 offers only three attribution models available in the Attribution tab : Last Click, Last Click For Google Ads, and Data Driven. First Click attribution is essential for understanding where and when demand is generated. In the previous version of Google Analytics (and until recently, in the current one), users could quickly apply First Click and other attribution models, compare them, and gain insights. Now, this capability is gone.

    GA4 attribution model

    Certainly, you can look at the conversion distribution considering the First User Source parameter – this will be some proxy for First Click attribution. However, comparing it with others in the Model Comparison tab won’t be possible. In the context of the GA4 interface, it makes sense to forget about non-standard attribution models.

    Question 5. How do I account for intra-session traffic ?

    Intra-session traffic essentially refers to a change in traffic sources within a session. Imagine a scenario where a user comes to your site organically from Google and, within a minute, comes from an email campaign. In the previous version of Google Analytics, a new session with the traffic source “e-mail” would be created in such a case. But now, the situation has changed.

    A session now only ends in the case of a timeout – say, 30 minutes without interaction. This means a session will always have a source from which it started. If a user changes the source within a session (clicks on an ad, from email campaigns, and so on), you won’t know anything about it until they convert. This is a significant blow to intra-session traffic since their contribution to traffic remains virtually unnoticed. 

    Question 6. How can I account for users who have not consented to the use of third-party cookies ?

    You can’t. Google Consent Mode settings imply several options when a user rejects the use of 3rd party cookies. In GA4 and BigQuery, depersonalized cookieless pings will be sent. These pings do not contain specific client_id, session_id, or other custom dimensions. As a result, you won’t be able to consider them as users or link the actions of such users together.

    Question 7. How can I compare data in explorations with the previous year ?

    The maximum data retention period for a free GA4 account is 14 months. This means that if the date range is wider, you can only use standard reports. You won’t be able to compare or view cohorts or funnels for periods more than 14 months ago. This makes the product functionality less rich because various report formats in explorations are very convenient for comparing specific metrics in easily digestible reports.

    GA4 data retention

    Of course, you always have the option to connect BigQuery and store raw data without limitations, but this process usually requires the involvement of an advanced analyst. And precisely this option is unavailable to most marketers in small teams.

    Question 8. Is the data for yesterday accurate ?

    Unknown. Google declares that data processing in GA4 takes up to 48 hours. And although this process is faster, most users still have room for frustration. And they can be understood.

    Data processing time in GA4

    What does “data processing takes 24-48 hours” mean ? When will the data in reports be complete ? For yesterday ? Or the day before yesterday ? Or for all days that were more than two days ago ? Unclear. What should marketers tell their managers when they were asked if all the data is in this report ? Well, probably all of it… or maybe not… Let’s wait for 48 hours…

    Undoubtedly, computational resources and time are needed for data preprocessing and aggregation. It’s okay that data for today will not be up-to-date. And probably not for yesterday either. But people just want to know when they can trust their data. Are they asking for too much : just a note that this report contains all the data sent and processed by Google Analytics ?

    What should you do ?

    Credit should be given to the Google team – they have done a lot to enable users to answer these questions in one form or another. For example, you can use data streaming in BigQuery and work with raw data. The entry threshold for this functionality has been significantly lowered. In fact, if you are dissatisfied with the GA4 interface, you can organize your export to BigQuery and create your own reports without (almost) any restrictions.

    Another strong option is the widespread launch of GTM Server Side. This allows you to quite freely modify the event model and essentially enrich each hit with various parameters, doing this in a first-party context. This, of course, reduces the harmful impact of most of the limitations described in this text.

    But this is not a solution.

    The users in question – marketers, managers, developers – they do not want or do not have the time for a deep dive into the issue. And they want simple answers to simple (it seemed) questions. And for now, unfortunately, GA4 is more of a professional tool for analysts than a convenient instrument for generating insights for not very advanced users.

    Why is this such a serious issue ?

    The thing is – and this is crucial – over the past 10 years, Google has managed to create a sort of GA-bubble for marketers. Many of them have become so accustomed to Google Analytics that when faced with another issue, they don’t venture to explore alternative solutions but attempt to solve it on their own. And almost always, this turns out to be expensive and inconvenient.

    However, with the latest updates to GA4, it is becoming increasingly evident that this application is struggling to address even the most basic questions from users. And these questions are not fantastically complex. Much of what was described in this article is not an unsolvable mystery and is successfully addressed by other analytics services.

    Let’s try to answer some of the questions described from the perspective of Matomo.

    Question 1 : What are the most popular traffic sources ? [Solved]

    In the Acquisition panel, you will find at least three easily identifiable reports – for traffic channels (All Channels), sources (Websites), and campaigns (Campaigns). 

    Channel Type Table

    With these, you can quickly and easily answer the question about the most popular traffic sources, and if needed, delve into more detailed information, such as landing pages.

    Question 2 : What is my conversion rate ? [Solved]

    Under Goals in Matomo, you’ll easily find the overall conversion rate for your site. Below that you’ll have access to the conversion rate of each goal you’ve set in your Matomo instance.

    Question 3 : Can I trust user and session metrics ? [Solved]

    Yes. With Matomo, you’re guaranteed 100% accurate data. Matomo does not apply sampling, does not employ specific statistical algorithms, or any analogs of threshold values. Yes, it is possible, and it’s perfectly normal. If you see a metric in the visits or users field, it accurately represents reality by 100%.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 4 : How do I calculate First Click attribution ? [Solved]

    You can do this in the same section where the other 5 attribution models, available in Matomo, are calculated – in the Multi Attribution section.

    Multi Attribution feature

    You can choose a specific conversion and, in a few clicks, calculate and compare up to 3 marketing attribution models. This means you don’t have to spend several days digging through documentation trying to understand how a particular model is calculated. Have a question – get an answer.

    Question 5 : How do I account for intra-session traffic ? [Solved]

    Matomo creates a new visit when a user changes a campaign. This means that you will accurately capture all relevant traffic if it is adequately tagged. No campaigns will be lost within a visit, as they will have a new utm_campaign parameter.

    This is a crucial point because when the Referrer changes, a new visit is not created, but the key lies in something else – accounting for all available traffic becomes your responsibility and depends on how you tag it.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 6 : How can I account for users who have not consented to the use of third-party cookies ? [Solved]

    Google Analytics requires users to accept a cookie consent banner with “analytics_storage=granted” to track them. If users reject cookie consent banners, however, then Google Analytics can’t track these visitors at all. They simply won’t show up in your traffic reports. 

    Matomo doesn’t require cookie consent banners (apart from in the United Kingdom and Germany) and can therefore continue to track visitors even after they have rejected a cookie consent screen. This is achieved through a config_id variable (the user identifier equivalent which is updating once a day). 

    Matomo doesn't need cookie consent, so you see a complete view of your traffic

    This means that virtually all of your website traffic will be tracked regardless of whether users accept a cookie consent banner or not.

    Question 7 : How can I compare data in explorations with the previous year ? [Solved]

    There is no limitation on data retention for your aggregated reports in Matomo. The essence of Matomo experience lies in the reporting data, and consequently, retaining reports indefinitely is a viable option. So you can compare data for any timeframe. 7

    Date Comparison Selector
  • Making Your First-Party Data Work for You and Your Customers

    11 mars, par Alex Carmona

    At last count, 162 countries had enacted data privacy policies of one kind or another. These laws or regulations, without exception, intend to eliminate the use of third-party data. That puts marketing under pressure because third-party data has been the foundation of online marketing efforts since the dawn of the Internet.

    Marketers need to future-proof their operations by switching to first-party data. This will require considerable adjustment to systems and processes, but the reward will be effective marketing campaigns that satisfy privacy compliance requirements and bring the business closer to its customers.

    To do that, you’ll need a coherent first-party data strategy. That’s what this article is all about. We’ll explain the different types of personal data and discuss how to use them in marketing without compromising or breaching data privacy regulations. We’ll also discuss how to build that strategy in your business. 

    So, let’s dive in.

    The different data types

    There are four distinct types of personal data used in marketing, each subject to different data privacy regulations.

    Before getting into the different types, it’s essential to understand that all four may comprise one or more of the following :

    Identifying dataName, email address, phone number, etc.
    Behavioural dataWebsite activity, app usage, wishlist content, purchase history, etc.
    Transactional dataOrders, payments, subscription details, etc.
    Account dataCommunication preferences, product interests, wish lists, etc.
    Demographic dataAge, gender, income level, education, etc.
    Geographic DataLocation-based information, such as zip codes or regional preferences.
    Psychographic DataInterests, hobbies and lifestyle preferences.

    First-party data

    When businesses communicate directly with customers, any data they exchange is first-party. It doesn’t matter how the interaction occurs : on the telephone, a website, a chat session, or even in person.

    Of course, the parties involved aren’t necessarily individuals. They may be companies, but people within those businesses will probably share at least some of the data with colleagues. That’s fine, so long as the data : 

    • Remains confidential between the original two parties involved, and 
    • It is handled and stored following applicable data privacy regulations.

    The core characteristic of first-party data is that it’s collected directly from customer interactions. This makes it reliable, accurate and inherently compliant with privacy regulations — assuming the collecting party complies with data privacy laws.

    A great example of first-party data use is in banking. Data collected from customer interactions is used to provide personalised services, detect fraud, assess credit risk and improve customer retention.

    Zero-party data

    There’s also a subset of first-party data, sometimes called zero-party data. It’s what users intentionally and proactively share with a business. It can be preferences, intentions, personal information, survey responses, support tickets, etc.

    What makes it different is that the collection of this data depends heavily on the user’s trust. Transparency is a critical factor, too ; visitors expect to be informed about how you’ll use their data. Consumers also have the right to withdraw permission to use all or some of their information at any time.

    Diagram showing how a first-party data strategy is built on trust and transparency

    Second-party data

    This data is acquired from a separate organisation that collects it firsthand. Second-party data is someone else’s first-party data that’s later shared with or sold to other businesses. The key here is that whoever owns that data must give explicit consent and be informed of who businesses share their data with.

    A good example is the cooperation between hotel chains, car rental companies, and airlines. They share joint customers’ flight data, hotel reservations, and car rental bookings, much like travel agents did before the internet undermined that business model.

    Third-party data

    This type of data is the arch-enemy of lawmakers and regulators trying to protect the personal data of citizens and residents in their country. It’s information collected by entities that have no direct relationship with the individuals whose data it is.

    Third-party data is usually gathered, aggregated, and sold by data brokers or companies, often by using third-party cookies on popular websites. It’s an entire business model — these third-party brokers sell data for marketing, analytics, or research purposes. 

    Most of the time, third-party data subjects are unaware that their data has been gathered and sold. Hence the need for strong data privacy regulations.

    Benefits of a first-party data strategy

    First-party data is reliable, accurate, and ethically sourced. It’s an essential part of any modern digital marketing strategy.

    More personalised experiences

    The most important application of first-party data is customising and personalising customers’ interactions based on real behaviours and preferences. Personalised experiences aren’t restricted to websites and can extend to all customer communication.

    The result is company communications and marketing messages are far more relevant to customers. It allows businesses to engage more meaningfully with them, building trust and strengthening customer relationships. Inevitably, this also results in stronger customer loyalty and better customer retention.

    Greater understanding of customers

    Because first-party data is more accurate and reliable, it can be used to derive valuable insights into customer needs and wants. When all the disparate first-party data points are centralised and organised, it’s possible to uncover trends and patterns in customer behaviour that might not be apparent using other data.

    This helps businesses predict and respond to customer needs. It also allows marketing teams to be more deliberate when segmenting customers and prospects into like-minded groups. The data can also be used to create more precise personas for future campaigns or reveal how likely a customer would be to purchase in response to a campaign.

    Build trust with customers

    First-party data is unique to a business and originates from interactions with customers. It’s also data collected with consent and is “owned” by the company — if you can ever own someone else’s data. If treated like the precious resource, it can help businesses build trust with customers.

    However, developing that trust requires a transparent, step-by-step approach. This gradually strengthens relationships to the point where customers are more comfortable sharing the information they’re asked for.

    However, while building trust is a long and sometimes arduous process, it can be lost in an instant. That’s why first-party data must be protected like the Crown Jewels.

    Image showing the five key elements of a first-party data strategy

    Components of a first-party data strategy

    Security is essential to any first-party data strategy, and for good reason. As Gartner puts it, a business must find the optimal balance between business outcomes and data risk mitigation. Once security is baked in, attention can turn to the different aspects of the strategy.

    Data collection

    There are many ways to collect first-party data ethically, within the law and while complying with data privacy regulations, such as Europe’s General Data Protection Regulation (GDPR). Potential sources include :

    Website activityforms and surveys, behavioural tracking, cookies, tracking pixels and chatbots
    Mobile app interactionsin-app analytics, push notifications and in-app forms
    Email marketingnewsletter sign-ups, email engagement tracking, promotions, polls and surveys 
    Eventsregistrations, post-event surveys and virtual event analytics
    Social media interactionpolls and surveys, direct messages and social media analytics
    Previous transactionspurchase history, loyalty programmes and e-receipts 
    Customer service call centre data, live chat, chatbots and feedback forms
    In-person interactions in-store purchases, customer feedback and Wi-Fi sign-ins
    Gated contentwhitepapers, ebooks, podcasts, webinars and video downloads
    Interactive contentquizzes, assessments, calculators and free tools
    CRM platformscustomer profiles and sales data
    Consent managementprivacy policies, consent forms, preference setting

    Consent management

    It may be the final item on the list above, but it’s also a key requirement of many data privacy laws and regulations. For example, the GDPR is very clear about consent : “Processing personal data is generally prohibited, unless it is expressly allowed by law, or the data subject has consented to the processing.”

    For that reason, your first-party data strategy must incorporate various transparent consent mechanisms, such as cookie banners and opt-in forms. Crucially, you must provide customers with a mechanism to manage their preferences and revoke that consent easily if they wish to.

    Data management

    Effective first-party data management, mainly its security and storage, is critical. Most data privacy regimes restrict the transfer of personal data to other jurisdictions and even prohibit it in some instances. Many even specify where residents’ data must be stored.

    Consider this cautionary tale : The single biggest fine levied for data privacy infringement so far was €1.2 billion. The Irish Data Protection Commission imposed a massive fine on Meta for transferring EU users’ data to the US without adequate data protection mechanisms.

    Data security is critical. If first-party data is compromised, it becomes third-party data, and any customer trust developed with the business will evaporate. To add insult to injury, data regulators could come knocking. That’s why the trend is to use encryption and anonymisation techniques alongside standard access controls.

    Once security is assured, the focus is on data management. Many businesses use a Customer Data Platform. This software gathers, combines and manages data from many sources to create a complete and central customer profile. Modern CRM systems can also do that job. AI tools could help find patterns and study them. But the most important thing is to keep databases clean and well-organised to make it easier to use and avoid data silos.

    Data activation

    Once first-party data has been collected and analysed, it needs to be activated, which means a business needs to use it for the intended purpose. This is the implementation phase where a well-constructed first-party strategy pays off. 

    The activation stage is where businesses use the intelligence they gather to :

    • Personalise website and app experiences
    • Adapt marketing campaigns
    • Improve conversion rates
    • Match stated preferences
    • Cater to observed behaviours
    • Customise recommendations based on purchase history
    • Create segmented email campaigns
    • Improve retargeting efforts
    • Develop more impactful content

    Measurement and optimisation

    Because first-party data is collected directly from customers or prospects, it’s far more relevant, reliable, and specific. Your analytics and campaign tracking will be more accurate. This gives you direct and actionable insights into your audience’s behaviour, empowering you to optimise your strategies and achieve better results.

    The same goes for your collection and activation efforts. An advanced web analytics platform like Matomo lets you identify key user behaviour and optimise your tracking. Heatmaps, marketing attribution tools, user behaviour analytics and custom reports allow you to segment audiences for better traction (and collect even more first-party data).

    Image showing the five steps to developing a first-party data strategy

    How to build a first-party data strategy

    There are five important and sequential steps to building a first-party data strategy. But this isn’t a one-time process. It must be revisited regularly as operating and regulatory environments change. There are five steps : 

    1. Audit existing data

    Chances are that customers already freely provide a lot of first-party data in the normal course of business. The first step is to locate this data, and the easiest way to do that is by mapping the customer journey. This identifies all the touchpoints where first-party data might be found.

    1. Define objectives

    Then, it’s time to step back and figure out the goals of the first-party data strategy. Consider what you’re trying to achieve. For example :

    • Reduce churn 
    • Expand an existing loyalty programme
    • Unload excess inventory
    • Improve customer experiences

    Whatever the objectives are, they should be clear and measurable.

    1. Implement tools and technology

    The first two steps point to data gaps. Now, the focus turns to ethical web analytics with a tool like Matomo. 

    To further comply with data privacy regulations, it may also be appropriate to implement a Consent Management Platform (CMP) to help manage preferences and consent choices.

    1. Build trust with transparency

    With the tools in place, it’s time to engage customers. To build trust, keep them informed about how their data is used and remind them of their right to withdraw their consent. 

    Transparency is crucial in such engagement, as outlined in the 7 GDPR principles.

    1. Continuously improve

    Rinse and repeat. The one constant in business and life is change. As things change, they expose weaknesses or flaws in the logic behind systems and processes. That’s why a first-party data strategy needs to be continually reviewed, updated, and revised. It must adapt to changing trends, markets, regulations, etc. 

    Tools that can help

    Looking back at the different types of data, it’s clear that some are harder and more bothersome to get than others. But capturing behaviours and interactions can be easy — especially if you use tools that follow data privacy rules.

    But here’s a tip. Google Analytics 4 isn’t compliant by default, especially not with Europe’s GDPR. It may also struggle to comply with some of the newer data privacy regulations planned by different US states and other countries.

    Matomo Analytics is compliant with the GDPR and many other data privacy regulations worldwide. Because it’s open source, it can be integrated with any consent manager.

    Get started today by trying Matomo for free for 21 days,
    no credit card required.