Recherche avancée

Médias (91)

Autres articles (95)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (4165)

  • FFmpeg RTSP stream to remote MediaMTX server disconnects after a few seconds

    13 juin, par Rorschy

    I'm new to RTSP and MediaMTX, and I'm trying to live stream my screen using FFmpeg and MediaMTX for a specific use case.

    


    Everything works perfectly when both FFmpeg and MediaMTX run on the same machine.
However, when I move MediaMTX to a remote server, the stream becomes unstable — I can't maintain a connection or view the stream reliably.

    


    Here is the FFmpeg command I'm using from the client machine :

    


    ffmpeg -f gdigrab -framerate 10 -offset_x 0 -offset_y 0 -video_size 1920x1080 -i desktop -f lavfi -i anullsrc -vcodec libx264 -tune zerolatency -g 30 -sc_threshold 0 -preset ultrafast -tune zerolatency -f rtsp rtsp:///live/stream


    


    And here’s the relevant MediaMTX log output on the remote server :

    


    2025/06/12 14:28:44 INF [RTSP] [conn :35798] opened
2025/06/12 14:28:44 INF [RTSP] [session 2e487869] created by :35798
2025/06/12 14:28:44 INF [RTSP] [session 2e487869] is publishing to path 'live/stream', 2 tracks (H264, MPEG-4 Audio)
2025/06/12 14:28:45 INF [WebRTC] [session 8a909818] created by :47296
2025/06/12 14:28:45 WAR [WebRTC] [session 8a909818] skipping track 2 (MPEG-4 Audio)
2025/06/12 14:28:47 INF [WebRTC] [session dd0d3af7] created by :46306
2025/06/12 14:28:47 WAR [WebRTC] [session dd0d3af7] skipping track 2 (MPEG-4 Audio)
2025/06/12 14:28:49 INF [WebRTC] [session 5f853024] created by :46320
2025/06/12 14:28:49 WAR [WebRTC] [session 5f853024] skipping track 2 (MPEG-4 Audio)
2025/06/12 14:28:51 INF [WebRTC] [session 3edba9a8] created by :46342
2025/06/12 14:28:51 WAR [WebRTC] [session 3edba9a8] skipping track 2 (MPEG-4 Audio)
2025/06/12 14:28:53 INF [WebRTC] [session 4be5bd9b] created by :46352
2025/06/12 14:28:53 WAR [WebRTC] [session 4be5bd9b] skipping track 2 (MPEG-4 Audio)
2025/06/12 14:28:54 INF [RTSP] [conn :35798] closed: terminated
2025/06/12 14:28:54 INF [RTSP] [session 2e487869] destroyed: session timed out
2025/06/12 14:28:54 INF [WebRTC] [session 8a909818] closed: terminated
2025/06/12 14:28:54 INF [WebRTC] [session 3edba9a8] closed: terminated
2025/06/12 14:28:54 INF [WebRTC] [session 5f853024] closed: terminated


    


    My questions :

    


      

    1. What could be causing the RTSP stream to disconnect when streaming to a remote MediaMTX server ?
    2. 


    3. Are there any recommended network settings or MediaMTX configuration tweaks to ensure a stable stream over the internet ?
    4. 


    


    Any help or guidance would be greatly appreciated. Thanks !

    


  • Is this a problem in my command, the stream, or FFMPEG itself ?

    10 juin, par Ali Mustafa

    I am trying to download a section from approximately 06:40:00 to 06:44:00 from this stream : https://kick.com/grossgore/videos/8d36c089-ff2b-4167-9c92-bc8a3a9d033b

    


    I found the m3u8 URL : https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/playlist.m3u8

    


    I run the following command :

    


    ffmpeg -ss 06:40:00 -to 06:44:00 -i https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/playlist.m3u8 -c copy out.mp4


    


    The command runs for a while, but for some reason the output file is empty once the program has finished. How do I figure out what the problem is ?

    


    Log :

    


    ffmpeg version 4.4.2-0ubuntu0.22.04.1 Copyright (c) 2000-2021 the FFmpeg developers
  built with gcc 11 (Ubuntu 11.2.0-19ubuntu1)
  configuration: --prefix=/usr --extra-version=0ubuntu0.22.04.1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libdav1d --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librabbitmq --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzimg --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --enable-pocketsphinx --enable-librsvg --enable-libmfx --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-shared
  libavutil      56. 70.100 / 56. 70.100
  libavcodec     58.134.100 / 58.134.100
  libavformat    58. 76.100 / 58. 76.100
  libavdevice    58. 13.100 / 58. 13.100
  libavfilter     7.110.100 /  7.110.100
  libswscale      5.  9.100 /  5.  9.100
  libswresample   3.  9.100 /  3.  9.100
  libpostproc    55.  9.100 / 55.  9.100
[hls @ 0x633e19ea3200] Skip ('#EXT-X-VERSION:3')
[hls @ 0x633e19ea3200] Skip ('#ID3-EQUIV-TDTG:2025-05-25T21:04:39')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-TWITCH-ELAPSED-SECS:0.000')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-TWITCH-TOTAL-SECS:29231.935')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T12:56:26.675Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T12:56:39.175Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T12:56:51.675Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T12:57:04.175Z')
...
...
...
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T17:38:43.058Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T17:38:55.558Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-DISCONTINUITY')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-TWITCH-DISCONTINUITY')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T17:39:56.883Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T17:40:09.383Z')
...
...
...
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T21:04:17.516Z')
[hls @ 0x633e19ea3200] Skip ('#EXT-X-PROGRAM-DATE-TIME:2025-05-25T21:04:30.016Z')
[hls @ 0x633e19ea3200] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/0.ts' for reading
[hls @ 0x633e19ea3200] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1.ts' for reading
Input #0, hls, from 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/playlist.m3u8':
  Duration: 08:07:11.94, start: 64.171000, bitrate: 0 kb/s
  Program 0 
    Metadata:
      variant_bitrate : 0
  Stream #0:0: Audio: aac (LC) ([15][0][0][0] / 0x000F), 48000 Hz, stereo, fltp
    Metadata:
      variant_bitrate : 0
  Stream #0:1: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(tv, bt709), 1920x1080 [SAR 1:1 DAR 16:9], 60 tbr, 90k tbn, 120 tbc
    Metadata:
      variant_bitrate : 0
  Stream #0:2: Data: timed_id3 (ID3  / 0x20334449)
    Metadata:
      variant_bitrate : 0
Output #0, mp4, to 'out.mp4':
  Metadata:
    encoder         : Lavf58.76.100
  Stream #0:0: Video: h264 (High) (avc1 / 0x31637661), yuv420p(tv, bt709), 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 60 tbr, 90k tbn, 90k tbc
    Metadata:
      variant_bitrate : 0
  Stream #0:1: Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp
    Metadata:
      variant_bitrate : 0
Stream mapping:
  Stream #0:1 -> #0:0 (copy)
  Stream #0:0 -> #0:1 (copy)
Press [q] to stop, [?] for help
[hls @ 0x633e19ea3200] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1921.ts' for reading
[hls @ 0x633e19ea3200] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1922.ts' for reading
[https @ 0x633e1a43f9c0] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1923.ts' for reading
[https @ 0x633e1a877300] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1924.ts' for reading
[https @ 0x633e1a43f9c0] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1925.ts' for reading
[https @ 0x633e1a877300] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/1926.ts' for reading
...
...
...
[https @ 0x633e1a877300] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/2338.ts' for reading
[https @ 0x633e1a43f9c0] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/2339.ts' for reading
[https @ 0x633e1a877300] Opening 'https://stream.kick.com/ivs/v1/196233775518/hDSBAWziz2jA/2025/5/25/12/56/LrW3TwZUg7Xk/media/hls/1080p60/2340.ts' for reading
frame=    0 fps=0.0 q=-1.0 Lsize=       0kB time=00:00:00.00 bitrate=N/A speed=   0x    
video:0kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown


    


  • Adding A New System To The Game Music Website

    1er août 2012, par Multimedia Mike — General

    At first, I was planning to just make a little website where users could install a Chrome browser extension and play music from old 8-bit NES games. But, like many software projects, the goal sort of ballooned. I created a website where users can easily play old video game music. It doesn’t cover too many systems yet, but I have had individual requests to add just about every system you can think of.

    The craziest part is that I know it’s possible to represent most of the systems. Eventually, it would be great to reach Chipamp parity (a combination plugin for Winamp that packages together plugins for many of these chiptunes). But there is a process to all of this. I have taken to defining a number of phases that are required to get a new system covered.

    Phase 0 informally involves marveling at the obscurity of some of the console systems for which chiptune collections have evolved. WonderSwan ? Sharp X68000 ? PC-88 ? I may be viewing this through a terribly Ameri-centric lens. I’ve at least heard of the ZX Spectrum and the Amstrad CPC even if I’ve never seen either.

    No matter. The goal is to get all their chiptunes cataloged and playable.

    Phase 1 : Finding A Player
    The first step is to find a bit of open source code that can play a particular format. If it’s a library that can handle many formats, like Game Music Emu or Audio Overload SDK, even better (probably). The specific open source license isn’t a big concern for me. I’m almost certain that some of the libraries that SaltyGME currently mixes are somehow incompatible, license-wise. I’ll worry about it when I encounter someone who A) cares, and B) is in a position to do something about it. Historical preservation comes first, and these software libraries aren’t getting any younger (I’m finding some that haven’t been touched in a decade).

    Phase 2 : Test Program
    The next phase is to create a basic test bench program that sends a music file into the library, generates a buffer of audio, and shoves it out to the speakers via PulseAudio’s simple API (people like to rip on PulseAudio, but its simple API really lives up to its name and requires pages less boilerplate code to play a few samples than ALSA).

    Phase 3 : Plug Into Web Player
    After successfully creating the test bench and understanding exactly which source files need to be built, the next phase is to hook it up to the main SaltyGME program via the ad-hoc plugin API I developed. This API requires that a player backend can, at the very least, initialize itself based on a buffer of bytes and generate audio samples into an array of 16-bit numbers. The API also provides functions for managing files with multiple tracks and toggling individual voices/channels if the library supports such a feature. Having the test bench application written beforehand usually smooths out this step.

    But really, I’m just getting started.

    Phase 4 : Collecting A Song Corpus
    Then there is the matter of staging a collection of songs for a given system. It seems like it would just be a matter of finding a large collection of songs for a given format, downloading them in bulk, and mirroring them. Honestly, that’s the easy part. People who are interested in this stuff have been lovingly curating massive collections of these songs for years (see SNESmusic.org for one of the best examples, and they also host a torrent of all their music for really quick and easy hoarding).

    In my drive to make this game music website more useful for normal people, the goal is to extract as much metadata as possible to make searching better, and to package the data so that it’s as convenient as possible for users. Whenever I seek to add a new format to the collection, this is the phase where I invariably find that I have to fundamentally modify some of the assumptions I originally made in the player.

    First, there were the NES Sound Format (NSF) files, the original format I wanted to play. These are files that have any number of songs packed into a single file. Playback libraries expose APIs to jump to individual tracks. So the player was designed around that. Game Boy GBS files also fall into this category but present a different challenge vis-à-vis metadata, addressed in the next phase.

    Then, there were the SPC files. Each SPC file is its own song and multiple SPC files are commonly bundled as RAR files. Not wanting to deal with RAR, or any format where I interacted with a general compression API to pull a few files out, I created a custom resource format (inspired by so many I have studied and documented) and compressed it with a simpler compression API. I also had to modify some of the player’s assumptions to deal with this archive format. Genesis VGMs, bundled either in .zip or .7z, followed the same model as SPC in RAR.

    Then it was suggested that I attempt to bring SaltyGME closer to feature parity with Chipamp, rather than just being a Chrome browser frontend for Game Music Emu. When I studied the Portable Sound Format (PSF), I realized it didn’t fit into the player model I already had. PSF uses a sort of shared library model for code execution and I developed another resource archive format to cope with it. So that covers quite a few formats.

    One more architecture challenge arose when I started to study one of the prevailing metadata formats, explained in the next phase.

    Phase 5 : Metadata
    Finally, for the collections to really be useful, I need to harvest that juicy metadata for search and presentation.

    I have created a series of programs and scripts to scrape metadata out of these music files and store it all in a database that drives the website and search engine. I recognize that it’s no good to have a large corpus of songs with minimal metadata and while importing bulk quantities of music, the scripts harshly reject songs that have too little metadata.

    Again, challenges abound. One of the biggest challenges I’m facing is the peculiar quasi-freeform metadata format that emerged as .m3u that takes a form similar to :

    #################################################################
    #
    # GRADIUS2
    # (c) KONAMI  by Furukawa Motoaki, IKACHAN
    #
    #################################################################
    

    nemesis2.kss::KSS,62,[Nemesis2] (Opening),2:23,,0
    nemesis2.kss::KSS,61,[Nemesis2] (Start),7,,0
    nemesis2.kss::KSS,43,[Nemesis2] (Air Battle),34,0-
    nemesis2.kss::KSS,44,[Nemesis2] (1st. BGM),51,0-
    [...]

    A lot of file formats (including Game Boy GBS mentioned earlier) store their metadata separately using this format. I have some ideas about tools I can use to help me process this data but I’m pretty sure each one will require some manual intervention.

    As alluded to in phase 4, .m3u presents another architectural challenge : Notice the second field in the CSV .m3u data. That’s a track number. A player can’t expect every track in a bundled chiptune file to be valid, nor to be in any particular order. Thus, I needed to alter the architecture once more to take this into account. However, instead of modifying the SaltyGME player, I simply extended the metadata database to include a playback order which, by default, is the same as the track order but can also accommodate this new issue. This also has the bonus of providing a facility to exclude playback of certain tracks. This comes in handy for many PSF archives which tend to include files that only provide support for other files and aren’t meant to be played on their own.

    Bright Side
    The reward for all of this effort is that the data lands in a proper database in the end. None of it goes back into the chiptune files themselves. This makes further modification easier as all of the data that is indexed and presented on the site comes from the database. Somewhere down the road, I should probably create an API for accessing this metadata.